神经网络与机器学习,tensorflow,part5(简单卷积网络实现mnist手写数字识别__准确率达0.99

#载入MNIST数据集,创建默认的Interactive Session。
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
sess = tf.InteractiveSession()
 
#定义初始化函数,以便重复使用创建权重、偏置、卷积层、池化层。
def weight_variable(shape):
  initial = tf.truncated_normal(shape, stddev=0.1)
  return tf.Variable(initial)
 
def bias_variable(shape):
  initial = tf.constant(0.1, shape=shape)
  return tf.Variable(initial)
   
def conv2d(x, W):
  return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
 
def max_pool_2x2(x):
  return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
                        strides=[1, 2, 2, 1], padding='SAME') 
 
#在设计卷积神经网络结构之前,定义输入的placeholder,x是特征,y_是真实Label。
#由于卷积神经网络会使用到空间结构信息,所以,需要将1D的输入向量转为2D图片结构,即从1*784的形式转换为原始的28*28结构。
#因为只有一个颜色通道,所以最终尺寸为[-1,28,28,1],其中‘-1’代表样本数量不固定,'1'代表颜色通道数量。
x = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 10])
x_image = tf.reshape(x, [-1,28,28,1])
#定义第一个卷积层。
#先使用前面函数进行初始化,包括weights和bias。其中[5,5,1,32]代表卷积核尺寸为5**5,1个颜色通道,32个不同的卷积核。
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
#定义第二个卷积层。
#基本与第一个卷积层一样,只是其中的卷积核数量变成64.
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
 
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
#为了减轻过拟合,使用一个Dropout层,其用法是通过一个placeholder传入keep_prob比率来控制。
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
 
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
#定义损失函数cross_entropy,这里选择Adam优化器。
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv), reduction_indices=[1]))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
#继续定义评测准确率操作。
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
 
#开始训练过程。
tf.global_variables_initializer().run()
for i in range(10000):
  batch = mnist.train.next_batch(50)
  if i%100 == 0:
    print("step %d, training accuracy :"%i)
    print(accuracy.eval(feed_dict={
    x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
  train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
#全部训练完毕,在最终的测试集上进行全面测试,得到整体的分类准确率。
print("test accuracy :")
print(accuracy.eval(feed_dict={
    x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))

参考:
https://www.cnblogs.com/georgeli/p/8470745.html

你可能感兴趣的:(神经网络与机器学习,tensorflow,part5(简单卷积网络实现mnist手写数字识别__准确率达0.99)