Matplotlib介绍
Matplotlib是Python的绘图库,它能让使用者很轻松地将数据图形化,并且提供多样化的输出格式。Matplotlib可以用来绘制各种静态,动态,交互式的图表。Matplotlib是一个非常强大的Python画图工具,我们可以使用该工具将很多数据通过图表的形式更直观的呈现出来。Matplotlib可以绘制线图、散点图、等高线图、条形图、柱状图、3D图形、甚至是图形动画等等。
Matplotlib应用
Matplotlib通常与NumPy和SciPy(ScientificPython)一起使用,这种组合广泛用于替代MatLab,是一个强大的科学计算环境,有助于我们通过Python学习数据科学或者机器学习。SciPy是一个开源的Python算法库和数学工具包。SciPy包含的模块有最优化、线性代数、积分、插值、特殊函数、快速傅里叶变换、信号处理和图像处理、常微分方程求解和其他科学与工程中常用的计算
Matplotlib 安装
升级 pip:
python3 -m pip install -U pip
安装 matplotlib 库:
python3 -m pip install -U matplotlib
安装完成后,我们就可以通过 import 来导入 matplotlib 库:
import matplotlib
以下实例,我们通过导入 matplotlib 库,然后查看 matplotlib 库的版本号:
实例
import matplotlib
print(matplotlib.version)
执行以上代码,输出结果如下:
3.4.2
Matplotlib Pyplot
Pyplot 是 Matplotlib 的子库,提供了和 MATLAB 类似的绘图 API。
Pyplot 是常用的绘图模块,能很方便让用户绘制 2D 图表。
Pyplot 包含一系列绘图函数的相关函数,每个函数会对当前的图像进行一些修改,例如:给图像加上标记,生新的图像,在图像中产生新的绘图区域等等。
使用的时候,我们可以使用 import 导入 pyplot 库,并设置一个别名 plt:
import matplotlib.pyplot as plt
这样我们就可以使用 plt 来引用 Pyplot 包的方法。
以下实例,我们通过两个坐标 (0,0) 到 (6,100) 来绘制一条线:
实例
import matplotlib.pyplot as plt
import numpy as np
xpoints = np.array([0, 6])
ypoints = np.array([0, 100])
plt.plot(xpoints, ypoints)
plt.show()
输出结果如下所示:
以上实例中我们使用了 Pyplot 的 plot() 函数, plot() 函数是绘制二维图形的最基本函数。
plot() 用于画图它可以绘制点和线,语法格式如下:
plot([x], y, [fmt], *, data=None, **kwargs)# 画多条线
plot([x], y, [fmt], [x2], y2, [fmt2], …, **kwargs)
参数说明:
x, y:点或线的节点,x 为 x 轴数据,y 为 y 轴数据,数据可以列表或数组。
fmt:可选,定义基本格式(如颜色、标记和线条样式)。
**kwargs:可选,用在二维平面图上,设置指定属性,如标签,线的宽度等。
plot(x, y) # 创建 y 中数据与 x 中对应值的二维线图,使用默认样式
plot(x, y, ‘bo’) # 创建 y 中数据与 x 中对应值的二维线图,使用蓝色实心圈绘制
plot(y) # x 的值为 0…N-1
plot(y, ‘r+’) # 使用红色 + 号
颜色字符:‘b’ 蓝色,‘m’ 洋红色,‘g’ 绿色,‘y’ 黄色,‘r’ 红色,‘k’ 黑色,‘w’ 白色,‘c’ 青绿色,‘#008000’ RGB 颜色符串。多条曲线不指定颜色时,会自动选择不同颜色。
线型参数:‘‐’ 实线,‘‐‐’ 破折线,‘‐.’ 点划线,‘:’ 虚线。
标记字符:‘.’ 点标记,‘,’ 像素标记(极小点),‘o’ 实心圈标记,‘v’ 倒三角标记,‘^’ 上三角标记,‘>’ 右三角标记,‘<’ 左三角标记…等等。
如果我们要绘制坐标 (1, 3) 到 (8, 10) 的线,我们就需要传递两个数组 [1, 8] 和 [3, 10] 给 plot 函数:
实例
import matplotlib.pyplot as plt
import numpy as np
xpoints = np.array([1, 8])
ypoints = np.array([3, 10])
plt.plot(xpoints, ypoints)
plt.show()
以上代码输出结果为:
如果我们只想绘制两个坐标点,而不是一条线,可以使用 o 参数,表示一个实心圈的标记:
绘制坐标 (1, 3) 和 (8, 10) 的两个点
import matplotlib.pyplot as plt
import numpy as np
xpoints = np.array([1, 8])
ypoints = np.array([3, 10])
plt.plot(xpoints, ypoints, ‘o’)
plt.show()
以上代码输出结果为:
我们也可以绘制任意数量的点,只需确保两个轴上的点数相同即可。
绘制一条不规则线,坐标为 (1, 3) 、 (2, 8) 、(6, 1) 、(8, 10),对应的两个数组为:[1, 2, 6, 8] 与 [3, 8, 1, 10]。
实例
import matplotlib.pyplot as plt
import numpy as np
xpoints = np.array([1, 2, 6, 8])
ypoints = np.array([3, 8, 1, 10])
plt.plot(xpoints, ypoints)
plt.show()
以上代码输出结果为:
如果我们不指定 x 轴上的点,则 x 会根据 y 的值来设置为 0, 1, 2, 3…N-1。
实例
import matplotlib.pyplot as plt
import numpy as np
ypoints = np.array([3, 10])
plt.plot(ypoints)
plt.show()
以上代码输出结果为:
从上图可以看出 x 的值默认设置为 [0, 1]。
再看一个有更多值的实例:
实例
import matplotlib.pyplot as plt
import numpy as np
ypoints = np.array([3, 8, 1, 10, 5, 7])
plt.plot(ypoints)
plt.show()
以上代码输出结果为:
从上图可以看出 x 的值默认设置为 [0, 1, 2, 3, 4, 5]。
以下实例我们绘制一个正弦和余弦图,在 plt.plot() 参数中包含两对 x,y 值,第一对是 x,y,这对应于正弦函数,第二对是 x,z,这对应于余弦函数。
实例
import matplotlib.pyplot as plt
import numpy as np
x = np.arange(0,4*np.pi,0.1) # start,stop,step
y = np.sin(x)
z = np.cos(x)
plt.plot(x,y,x,z)
plt.show()
以上代码输出结果为:
Matplotlib 绘图标记
绘图过程如果我们想要给坐标自定义一些不一样的标记,就可以使用 plot() 方法的 marker 参数来定义。
以下实例定义了实心圆标记:
实例
import matplotlib.pyplot as plt
import numpy as np
ypoints = np.array([1,3,4,5,8,9,6,1,3,4,5,2,4])
plt.plot(ypoints, marker = ‘o’)
plt.show()
显示结果如下:
marker 可以定义的符号如下:
标记
符号
描述
“.”
点
“,”
像素点
“o”
实心圆
“v”
下三角
“^”
上三角
“<”
左三角
“>”
右三角
“1”
下三叉
“2”
上三叉
“3”
左三叉
“4”
右三叉
“8”
八角形
“s”
正方形
“p”
五边形
“P”
加号(填充)
“*”
星号
“h”
六边形 1
“H”
六边形 2
“+”
加号
“x”
乘号 x
“X”
乘号 x (填充)
“D”
菱形
“d”
瘦菱形
“|”
竖线
“_”
横线
0 (TICKLEFT)
左横线
1 (TICKRIGHT)
右横线
2 (TICKUP)
上竖线
3 (TICKDOWN)
下竖线
4 (CARETLEFT)
左箭头
5 (CARETRIGHT)
右箭头
6 (CARETUP)
上箭头
7 (CARETDOWN)
下箭头
8 (CARETLEFTBASE)
左箭头 (中间点为基准)
9 (CARETRIGHTBASE)
右箭头 (中间点为基准)
10 (CARETUPBASE)
上箭头 (中间点为基准)
11 (CARETDOWNBASE)
下箭头 (中间点为基准)
“None”, " " or “”
没有任何标记
‘ . . . ... ...’
渲染指定的字符。例如 “ f f f” 以字母 f 为标记。
以下实例定义了 * 标记:
实例
import matplotlib.pyplot as plt
import numpy as np
ypoints = np.array([1,3,4,5,8,9,6,1,3,4,5,2,4])
plt.plot(ypoints, marker = ‘*’)
plt.show()
显示结果如下:
以下实例定义了下箭头:
实例
import matplotlib.pyplot as plt
import matplotlib.markers
plt.plot([1, 2, 3], marker=matplotlib.markers.CARETDOWNBASE)
plt.show()
显示结果如下:
fmt 参数
fmt 参数定义了基本格式,如标记、线条样式和颜色。
fmt = ‘[marker][line][color]’
例如 o:r,o 表示实心圆标记,: 表示虚线,r 表示颜色为红色。
实例
import matplotlib.pyplot as plt
import numpy as np
ypoints = np.array([6, 2, 13, 10])
plt.plot(ypoints, ‘o:r’)
plt.show()
显示结果如下:
线类型:
线类型标记
描述
‘-’
实线
‘:’
虚线
‘–’
破折线
‘-.’
点划线
颜色类型:
颜色标记
描述
‘r’
红色
‘g’
绿色
‘b’
蓝色
‘c’
青色
‘m’
品红
‘y’
黄色
‘k’
黑色
‘w’
白色
标记大小与颜色
我们可以自定义标记的大小与颜色,使用的参数分别是:
markersize,简写为 ms:定义标记的大小。
markerfacecolor,简写为 mfc:定义标记内部的颜色。
markeredgecolor,简写为 mec:定义标记边框的颜色。
设置标记大小:
实例
import matplotlib.pyplot as plt
import numpy as np
ypoints = np.array([6, 2, 13, 10])
plt.plot(ypoints, marker = ‘o’, ms = 20)
plt.show()
显示结果如下:
设置标记外边框颜色:
实例
import matplotlib.pyplot as plt
import numpy as np
ypoints = np.array([6, 2, 13, 10])
plt.plot(ypoints, marker = ‘o’, ms = 20, mec = ‘r’)
plt.show()
显示结果如下:
设置标记内部颜色:
实例
import matplotlib.pyplot as plt
import numpy as np
ypoints = np.array([6, 2, 13, 10])
plt.plot(ypoints, marker = ‘o’, ms = 20, mfc = ‘r’)
plt.show()
显示结果如下:
自定义标记内部与边框的颜色:
实例
import matplotlib.pyplot as plt
import numpy as np
ypoints = np.array([6, 2, 13, 10])
plt.plot(ypoints, marker = ‘o’, ms = 20, mec = ‘#4CAF50’, mfc = ‘#4CAF50’)
plt.show()
显示结果如下:
Matplotlib 绘图线
绘图过程如果我们自定义线的样式,包括线的类型、颜色和大小等。
线的类型
线的类型可以使用 linestyle 参数来定义,简写为 ls。
类型
简写
说明
‘solid’ (默认)
‘-’
实线
‘dotted’
‘:’
点虚线
‘dashed’
‘–’
破折线
‘dashdot’
‘-.’
点划线
‘None’
‘’ 或 ’ ’
不画线
实例
import matplotlib.pyplot as plt
import numpy as np
ypoints = np.array([6, 2, 13, 10])
plt.plot(ypoints, linestyle = ‘dotted’)
plt.show()
显示结果如下:
使用简写:
实例
import matplotlib.pyplot as plt
import numpy as np
ypoints = np.array([6, 2, 13, 10])
plt.plot(ypoints, ls = ‘-.’)
plt.show()
显示结果如下:
线的颜色
线的颜色可以使用 color 参数来定义,简写为 c。
颜色类型:
颜色标记
描述
‘r’
红色
‘g’
绿色
‘b’
蓝色
‘c’
青色
‘m’
品红
‘y’
黄色
‘k’
黑色
‘w’
白色
当然也可以自定义颜色类型,例如:SeaGreen、#8FBC8F 等,完整样式可以参考 HTML 颜色值。
实例
import matplotlib.pyplot as plt
import numpy as np
ypoints = np.array([6, 2, 13, 10])
plt.plot(ypoints, color = ‘r’)
plt.show()
显示结果如下:
实例
import matplotlib.pyplot as plt
import numpy as np
ypoints = np.array([6, 2, 13, 10])
plt.plot(ypoints, c = ‘#8FBC8F’)
plt.show()
显示结果如下:
实例
import matplotlib.pyplot as plt
import numpy as np
ypoints = np.array([6, 2, 13, 10])
plt.plot(ypoints, c = ‘SeaGreen’)
plt.show()
显示结果如下:
线的宽度
线的宽度可以使用 linewidth 参数来定义,简写为 lw,值可以是浮点数,如:1、2.0、5.67 等。
实例
import matplotlib.pyplot as plt
import numpy as np
ypoints = np.array([6, 2, 13, 10])
plt.plot(ypoints, linewidth = ‘12.5’)
plt.show()
显示结果如下:
多条线
plot() 方法中可以包含多对 x,y 值来绘制多条线。
实例
import matplotlib.pyplot as plt
import numpy as np
y1 = np.array([3, 7, 5, 9])
y2 = np.array([6, 2, 13, 10])
plt.plot(y1)
plt.plot(y2)
plt.show()
从上图可以看出 x 的值默认设置为 [0, 1, 2, 3]。
显示结果如下:
我们也可以自己设置 x 坐标等值:
实例
import matplotlib.pyplot as plt
import numpy as np
x1 = np.array([0, 1, 2, 3])
y1 = np.array([3, 7, 5, 9])
x2 = np.array([0, 1, 2, 3])
y2 = np.array([6, 2, 13, 10])
plt.plot(x1, y1, x2, y2)
plt.show()
显示结果如下:
Matplotlib 轴标签和标题
我们可以使用 xlabel() 和 ylabel() 方法来设置 x 轴和 y 轴的标签。
实例
import numpy as np
import matplotlib.pyplot as plt
x = np.array([1, 2, 3, 4])
y = np.array([1, 4, 9, 16])
plt.plot(x, y)
plt.xlabel(“x - label”)
plt.ylabel(“y - label”)
plt.show()
显示结果如下:
标题
我们可以使用 title() 方法来设置标题。
实例
import numpy as np
import matplotlib.pyplot as plt
x = np.array([1, 2, 3, 4])
y = np.array([1, 4, 9, 16])
plt.plot(x, y)
plt.title(“RUNOOB TEST TITLE”)
plt.xlabel(“x - label”)
plt.ylabel(“y - label”)
plt.show()
显示结果如下:
图形中文显示
Matplotlib 默认情况不支持中文,我们可以使用以下简单的方法来解决。
这里我们使用思源黑体,思源黑体是 Adobe 与 Google 推出的一款开源字体。
官网:思源宋体
GitHub 地址:source-han-sans/OTF/SimplifiedChinese at release · adobe-fonts/source-han-sans · GitHub
打开链接后,在里面选一个就好了:
你也可以在网盘下载: 百度网盘 请输入提取码,提取码:yxqu。
可以下载个 OTF 字体,比如 SourceHanSansSC-Bold.otf,将该文件文件放在当前执行的代码文件中:
SourceHanSansSC-Bold.otf 文件放在当前执行的代码文件中:
实例
import numpy as np from matplotlib
import pyplot as plt
import matplotlib
zhfont1 = matplotlib.font_manager.FontProperties(fname=“SourceHanSansSC-Bold.otf”) x = np.arange(1,11)
y = 2 * x + 5
plt.title(“菜鸟教程 - 测试”, fontproperties=zhfont1)
plt.xlabel(“x 轴”, fontproperties=zhfont1)
plt.ylabel(“y 轴”, fontproperties=zhfont1)
plt.plot(x,y) plt.show()
执行输出结果如下图:
此外,我们还可以使用系统的字体:
from matplotlib import pyplot as pltimport matplotlib
a=sorted([f.name for f in matplotlib.font_manager.fontManager.ttflist])
for i in a:
print(i)
打印出你的 font_manager 的 ttflist 中所有注册的名字,找一个看中文字体例如:STFangsong(仿宋),然后添加以下代码即可:
plt.rcParams[‘font.family’]=[‘STFangsong’]
此外我们还可以自定义字体的样式:
实例
import numpy as np
from matplotlib import pyplot as plt
import matplotlib
zhfont1 = matplotlib.font_manager.FontProperties(fname=“SourceHanSansSC-Bold.otf”, size=18)
font1 = {‘color’:‘blue’,‘size’:20}
font2 = {‘color’:‘darkred’,‘size’:15}
x = np.arange(1,11)
y = 2 * x + 5
plt.title(“菜鸟教程 - 测试”, fontproperties=zhfont1, fontdict = font1)
plt.xlabel(“x 轴”, fontproperties=zhfont1)
plt.ylabel(“y 轴”, fontproperties=zhfont1)
plt.plot(x,y)
plt.show()
输出结果如下:
标题与标签的定位
title() 方法提供了 loc 参数来设置标题显示的位置,可以设置为: ‘left’, ‘right’, 和 ‘center’, 默认值为 ‘center’。
xlabel() 方法提供了 loc 参数来设置 x 轴显示的位置,可以设置为: ‘left’, ‘right’, 和 ‘center’, 默认值为 ‘center’。
ylabel() 方法提供了 loc 参数来设置 y 轴显示的位置,可以设置为: ‘bottom’, ‘top’, 和 ‘center’, 默认值为 ‘center’。
实例
import numpy as np
from matplotlib import pyplot as plt
import matplotlib
zhfont1 = matplotlib.font_manager.FontProperties(fname=“SourceHanSansSC-Bold.otf”, size=18)
font1 = {‘color’:‘blue’,‘size’:20}
font2 = {‘color’:‘darkred’,‘size’:15}
x = np.arange(1,11)
y = 2 * x + 5
plt.title(“菜鸟教程 - 测试”, fontproperties=zhfont1, fontdict = font1, loc=“left”)
plt.xlabel(“x 轴”, fontproperties=zhfont1, loc=“left”)
plt.ylabel(“y 轴”, fontproperties=zhfont1, loc=“top”)
plt.plot(x,y)
plt.show()
输出结果如下:
Matplotlib 网格线
我们可以使用 pyplot 中的 grid() 方法来设置图表中的网格线。
grid() 方法语法格式如下:
matplotlib.pyplot.grid(b=None, which=‘major’, axis=‘both’, )
参数说明:
b:可选,默认为 None,可以设置布尔值,true 为显示网格线,false 为不显示,如果设置 **kwargs 参数,则值为 true。
which:可选,可选值有 ‘major’、‘minor’ 和 ‘both’,默认为 ‘major’,表示应用更改的网格线。
axis:可选,设置显示哪个方向的网格线,可以是取 ‘both’(默认),‘x’ 或 ‘y’,分别表示两个方向,x 轴方向或 y 轴方向。
**kwargs:可选,设置网格样式,可以是 color=‘r’, linestyle=‘-’ 和 linewidth=2,分别表示网格线的颜色,样式和宽度。
以下实例添加一个简单的网格线,参数使用默认值:
实例
import numpy as np
import matplotlib.pyplot as plt
x = np.array([1, 2, 3, 4])
y = np.array([1, 4, 9, 16])
plt.title(“RUNOOB grid() Test”)
plt.xlabel(“x - label”)
plt.ylabel(“y - label”)
plt.plot(x, y)
plt.grid()
plt.show()
显示结果如下:
以下实例添加一个简单的网格线,axis 参数使用 x,设置 x 轴方向显示网格线:
实例
import numpy as np
import matplotlib.pyplot as plt
x = np.array([1, 2, 3, 4])
y = np.array([1, 4, 9, 16])
plt.title(“RUNOOB grid() Test”)
plt.xlabel(“x - label”)
plt.ylabel(“y - label”)
plt.plot(x, y)
plt.grid(axis=‘x’) # 设置 y 就在轴方向显示网格线
plt.show()
显示结果如下:
以下实例添加一个简单的网格线,并设置网格线的样式,格式如下:
grid(color = ‘color’, linestyle = ‘linestyle’, linewidth = number)
参数说明:
color:‘b’ 蓝色,‘m’ 洋红色,‘g’ 绿色,‘y’ 黄色,‘r’ 红色,‘k’ 黑色,‘w’ 白色,‘c’ 青绿色,‘#008000’ RGB 颜色符串。
linestyle:‘‐’ 实线,‘‐‐’ 破折线,‘‐.’ 点划线,‘:’ 虚线。
linewidth:设置线的宽度,可以设置一个数字。
实例
import numpy as np
import matplotlib.pyplot as plt
x = np.array([1, 2, 3, 4])
y = np.array([1, 4, 9, 16])
plt.title(“RUNOOB grid() Test”)
plt.xlabel(“x - label”)
plt.ylabel(“y - label”)
plt.plot(x, y)
plt.grid(color = ‘r’, linestyle = ‘–’, linewidth = 0.5)
plt.show()
显示结果如下:
Matplotlib 绘制多图
我们可以使用 pyplot 中的 subplot() 和 subplots() 方法来绘制多个子图。
subplot() 方法在绘图时需要指定位置,subplots() 方法可以一次生成多个,在调用时只需要调用生成对象的 ax 即可。
subplot
subplot(nrows, ncols, index, **kwargs)
subplot(pos, **kwargs)
subplot(**kwargs)
subplot(ax)
以上函数将整个绘图区域分成 nrows 行和 ncols 列,然后从左到右,从上到下的顺序对每个子区域进行编号 1…N ,左上的子区域的编号为 1、右下的区域编号为 N,编号可以通过参数 index 来设置。
设置 numRows = 1,numCols = 2,就是将图表绘制成 1x2 的图片区域, 对应的坐标为:
(1, 1), (1, 2)
plotNum = 1, 表示的坐标为(1, 1), 即第一行第一列的子图。
plotNum = 2, 表示的坐标为(1, 2), 即第一行第二列的子图。
实例
import matplotlib.pyplot as plt
import numpy as np
#plot 1:
xpoints = np.array([0, 6])
ypoints = np.array([0, 100])
plt.subplot(1, 2, 1)
plt.plot(xpoints,ypoints)
plt.title(“plot 1”)
#plot 2:
x = np.array([1, 2, 3, 4])
y = np.array([1, 4, 9, 16])
plt.subplot(1, 2, 2)
plt.plot(x,y)
plt.title(“plot 2”)
plt.suptitle(“RUNOOB subplot Test”)
plt.show()
显示结果如下:
设置 numRows = 2,numCols = 2,就是将图表绘制成 2x2 的图片区域, 对应的坐标为:
(1, 1), (1, 2)(2, 1), (2, 2)
plotNum = 1, 表示的坐标为(1, 1), 即第一行第一列的子图。
plotNum = 2, 表示的坐标为(1, 2), 即第一行第二列的子图。
plotNum = 3, 表示的坐标为(2, 1), 即第二行第一列的子图。
plotNum = 4, 表示的坐标为(2, 2), 即第二行第二列的子图。
实例
import matplotlib.pyplot as plt
import numpy as np
#plot 1:
x = np.array([0, 6])
y = np.array([0, 100])
plt.subplot(2, 2, 1)
plt.plot(x,y)
plt.title(“plot 1”)
#plot 2:
x = np.array([1, 2, 3, 4])
y = np.array([1, 4, 9, 16])
plt.subplot(2, 2, 2)
plt.plot(x,y)
plt.title(“plot 2”)
#plot 3:
x = np.array([1, 2, 3, 4])
y = np.array([3, 5, 7, 9])
plt.subplot(2, 2, 3)
plt.plot(x,y)
plt.title(“plot 3”)
#plot 4:
x = np.array([1, 2, 3, 4])
y = np.array([4, 5, 6, 7])
plt.subplot(2, 2, 4)
plt.plot(x,y)
plt.title(“plot 4”)
plt.suptitle(“RUNOOB subplot Test”)
plt.show()
显示结果如下:
subplots()
subplots() 方法语法格式如下:
matplotlib.pyplot.subplots(nrows=1, ncols=1, *, sharex=False, sharey=False, squeeze=True, subplot_kw=None, gridspec_kw=None, **fig_kw)
参数说明:
nrows:默认为 1,设置图表的行数。
ncols:默认为 1,设置图表的列数。
sharex、sharey:设置 x、y 轴是否共享属性,默认为 false,可设置为 ‘none’、‘all’、‘row’ 或 ‘col’。 False 或 none 每个子图的 x 轴或 y 轴都是独立的,True 或 ‘all’:所有子图共享 x 轴或 y 轴,‘row’ 设置每个子图行共享一个 x 轴或 y 轴,‘col’:设置每个子图列共享一个 x 轴或 y 轴。
squeeze:布尔值,默认为 True,表示额外的维度从返回的 Axes(轴)对象中挤出,对于 N1 或 1N 个子图,返回一个 1 维数组,对于 N*M,N>1 和 M>1 返回一个 2 维数组。如果设置为 False,则不进行挤压操作,返回一个元素为 Axes 实例的2维数组,即使它最终是1x1。
subplot_kw:可选,字典类型。把字典的关键字传递给 add_subplot() 来创建每个子图。
gridspec_kw:可选,字典类型。把字典的关键字传递给 GridSpec 构造函数创建子图放在网格里(grid)。
**fig_kw:把详细的关键字参数传给 figure() 函数。
实例
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0, 2*np.pi, 400)
y = np.sin(x**2)
fig, ax = plt.subplots()
ax.plot(x, y)
ax.set_title(‘Simple plot’)
f, (ax1, ax2) = plt.subplots(1, 2, sharey=True)
ax1.plot(x, y)
ax1.set_title(‘Sharing Y axis’)
ax2.scatter(x, y)
fig, axs = plt.subplots(2, 2, subplot_kw=dict(projection=“polar”))
axs[0, 0].plot(x, y)
axs[1, 1].scatter(x, y)
plt.subplots(2, 2, sharex=‘col’)
plt.subplots(2, 2, sharey=‘row’)
plt.subplots(2, 2, sharex=‘all’, sharey=‘all’)
plt.subplots(2, 2, sharex=True, sharey=True)
fig, ax = plt.subplots(num=10, clear=True)
plt.show()
部分图表显示结果如下:
图1
图2
图3
图4
Matplotlib 散点图
我们可以使用 pyplot 中的 scatter() 方法来绘制散点图。
scatter() 方法语法格式如下:
matplotlib.pyplot.scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, *, edgecolors=None, plotnonfinite=False, data=None, **kwargs)
参数说明:
x,y:长度相同的数组,也就是我们即将绘制散点图的数据点,输入数据。
s:点的大小,默认 20,也可以是个数组,数组每个参数为对应点的大小。
c:点的颜色,默认蓝色 ‘b’,也可以是个 RGB 或 RGBA 二维行数组。
marker:点的样式,默认小圆圈 ‘o’。
cmap:Colormap,默认 None,标量或者是一个 colormap 的名字,只有 c 是一个浮点数数组的时才使用。如果没有申明就是 image.cmap。
norm:Normalize,默认 None,数据亮度在 0-1 之间,只有 c 是一个浮点数的数组的时才使用。
vmin,vmax::亮度设置,在 norm 参数存在时会忽略。
alpha::透明度设置,0-1 之间,默认 None,即不透明。
linewidths::标记点的长度。
edgecolors::颜色或颜色序列,默认为 ‘face’,可选值有 ‘face’, ‘none’, None。
plotnonfinite::布尔值,设置是否使用非限定的 c ( inf, -inf 或 nan) 绘制点。
**kwargs::其他参数。
以下实例 scatter() 函数接收长度相同的数组参数,一个用于 x 轴的值,另一个用于 y 轴上的值:
实例
import matplotlib.pyplot as plt
import numpy as np
x = np.array([1, 2, 3, 4, 5, 6, 7, 8])
y = np.array([1, 4, 9, 16, 7, 11, 23, 18])
plt.scatter(x, y)
plt.show()
显示结果如下:
设置图标大小:
实例
import matplotlib.pyplot as plt
import numpy as np
x = np.array([1, 2, 3, 4, 5, 6, 7, 8])
y = np.array([1, 4, 9, 16, 7, 11, 23, 18])
sizes = np.array([20,50,100,200,500,1000,60,90])
plt.scatter(x, y, s=sizes)
plt.show()
显示结果如下:
自定义点的颜色:
实例
import matplotlib.pyplot as plt
import numpy as np
x = np.array([1, 2, 3, 4, 5, 6, 7, 8])
y = np.array([1, 4, 9, 16, 7, 11, 23, 18])
colors = np.array([“red”,“green”,“black”,“orange”,“purple”,“beige”,“cyan”,“magenta”])
plt.scatter(x, y, c=colors)
plt.show()
显示结果如下:
设置两组散点图:
实例
import matplotlib.pyplot as plt
import numpy as np
x = np.array([5,7,8,7,2,17,2,9,4,11,12,9,6])
y = np.array([99,86,87,88,111,86,103,87,94,78,77,85,86])
plt.scatter(x, y, color = ‘hotpink’)
x = np.array([2,2,8,1,15,8,12,9,7,3,11,4,7,14,12])
y = np.array([100,105,84,105,90,99,90,95,94,100,79,112,91,80,85])
plt.scatter(x, y, color = ‘#88c999’)
plt.show()
显示结果如下:
使用随机数来设置散点图:
实例
import numpy as np
import matplotlib.pyplot as plt
np.random.seed(19680801)
N = 50
x = np.random.rand(N)
y = np.random.rand(N)
colors = np.random.rand(N)
area = (30 * np.random.rand(N))**2 # 0 to 15 point radii
plt.scatter(x, y, s=area, c=colors, alpha=0.5) # 设置颜色及透明度
plt.title(“RUNOOB Scatter Test”) # 设置标题
plt.show()
显示结果如下:
颜色条 Colormap
Matplotlib 模块提供了很多可用的颜色条。
颜色条就像一个颜色列表,其中每种颜色都有一个范围从 0 到 100 的值。
下面是一个颜色条的例子:
设置颜色条需要使用 cmap 参数,默认值为 ‘viridis’,之后颜色值设置为 0 到 100 的数组。
实例
import matplotlib.pyplot as plt
import numpy as np
x = np.array([5,7,8,7,2,17,2,9,4,11,12,9,6])
y = np.array([99,86,87,88,111,86,103,87,94,78,77,85,86])
colors = np.array([0, 10, 20, 30, 40, 45, 50, 55, 60, 70, 80, 90, 100])
plt.scatter(x, y, c=colors, cmap=‘viridis’)
plt.show()
显示结果如下:
如果要显示颜色条,需要使用 plt.colorbar() 方法:
实例
import matplotlib.pyplot as plt
import numpy as np
x = np.array([5,7,8,7,2,17,2,9,4,11,12,9,6])
y = np.array([99,86,87,88,111,86,103,87,94,78,77,85,86])
colors = np.array([0, 10, 20, 30, 40, 45, 50, 55, 60, 70, 80, 90, 100])
plt.scatter(x, y, c=colors, cmap=‘viridis’)
plt.colorbar()
plt.show()
显示结果如下:
换个颜色条参数, cmap 设置为 afmhot_r:
实例
import matplotlib.pyplot as plt
import numpy as np
x = np.array([5,7,8,7,2,17,2,9,4,11,12,9,6])
y = np.array([99,86,87,88,111,86,103,87,94,78,77,85,86])
colors = np.array([0, 10, 20, 30, 40, 45, 50, 55, 60, 70, 80, 90, 100])
plt.scatter(x, y, c=colors, cmap=‘afmhot_r’)
plt.colorbar()
plt.show()
显示结果如下:
颜色条参数值可以是以下值:
颜色名称
保留关键字
Accent
Accent_r
Blues
Blues_r
BrBG
BrBG_r
BuGn
BuGn_r
BuPu
BuPu_r
CMRmap
CMRmap_r
Dark2
Dark2_r
GnBu
GnBu_r
Greens
Greens_r
Greys
Greys_r
OrRd
OrRd_r
Oranges
Oranges_r
PRGn
PRGn_r
Paired
Paired_r
Pastel1
Pastel1_r
Pastel2
Pastel2_r
PiYG
PiYG_r
PuBu
PuBu_r
PuBuGn
PuBuGn_r
PuOr
PuOr_r
PuRd
PuRd_r
Purples
Purples_r
RdBu
RdBu_r
RdGy
RdGy_r
RdPu
RdPu_r
RdYlBu
RdYlBu_r
RdYlGn
RdYlGn_r
Reds
Reds_r
Set1
Set1_r
Set2
Set2_r
Set3
Set3_r
Spectral
Spectral_r
Wistia
Wistia_r
YlGn
YlGn_r
YlGnBu
YlGnBu_r
YlOrBr
YlOrBr_r
YlOrRd
YlOrRd_r
afmhot
afmhot_r
autumn
autumn_r
binary
binary_r
bone
bone_r
brg
brg_r
bwr
bwr_r
cividis
cividis_r
cool
cool_r
coolwarm
coolwarm_r
copper
copper_r
cubehelix
cubehelix_r
flag
flag_r
gist_earth
gist_earth_r
gist_gray
gist_gray_r
gist_heat
gist_heat_r
gist_ncar
gist_ncar_r
gist_rainbow
gist_rainbow_r
gist_stern
gist_stern_r
gist_yarg
gist_yarg_r
gnuplot
gnuplot_r
gnuplot2
gnuplot2_r
gray
gray_r
hot
hot_r
hsv
hsv_r
inferno
inferno_r
jet
jet_r
magma
magma_r
nipy_spectral
nipy_spectral_r
ocean
ocean_r
pink
pink_r
plasma
plasma_r
prism
prism_r
rainbow
rainbow_r
seismic
seismic_r
spring
spring_r
summer
summer_r
tab10
tab10_r
tab20
tab20_r
tab20b
tab20b_r
tab20c
tab20c_r
terrain
terrain_r
twilight
twilight_r
twilight_shifted
twilight_shifted_r
viridis
viridis_r
winter
winter_r
Matplotlib 柱形图
我们可以使用 pyplot 中的 bar() 方法来绘制柱形图。
bar() 方法语法格式如下:
matplotlib.pyplot.bar(x, height, width=0.8, bottom=None, *, align=‘center’, data=None, **kwargs)
参数说明:
x:浮点型数组,柱形图的 x 轴数据。
height:浮点型数组,柱形图的高度。
width:浮点型数组,柱形图的宽度。
bottom:浮点型数组,底座的 y 坐标,默认 0。
align:柱形图与 x 坐标的对齐方式,‘center’ 以 x 位置为中心,这是默认值。 ‘edge’:将柱形图的左边缘与 x 位置对齐。要对齐右边缘的条形,可以传递负数的宽度值及 align=‘edge’。
**kwargs::其他参数。
以下实例我们简单实用 bar() 来创建一个柱形图:
实例
import matplotlib.pyplot as plt
import numpy as np
x = np.array([“Runoob-1”, “Runoob-2”, “Runoob-3”, “C-RUNOOB”])
y = np.array([12, 22, 6, 18])
plt.bar(x,y)
plt.show()
显示结果如下:
垂直方向的柱形图可以使用 barh() 方法来设置:
实例
import matplotlib.pyplot as plt
import numpy as np
x = np.array([“Runoob-1”, “Runoob-2”, “Runoob-3”, “C-RUNOOB”])
y = np.array([12, 22, 6, 18])
plt.barh(x,y)
plt.show()
显示结果如下:
设置柱形图颜色:
实例
import matplotlib.pyplot as plt
import numpy as np
x = np.array([“Runoob-1”, “Runoob-2”, “Runoob-3”, “C-RUNOOB”])
y = np.array([12, 22, 6, 18])
plt.bar(x, y, color = “#4CAF50”)
plt.show()
显示结果如下:
自定义各个柱形的颜色:
实例
import matplotlib.pyplot as plt
import numpy as np
x = np.array([“Runoob-1”, “Runoob-2”, “Runoob-3”, “C-RUNOOB”])
y = np.array([12, 22, 6, 18])
plt.bar(x, y, color = [“#4CAF50”,“red”,“hotpink”,“#556B2F”])
plt.show()
显示结果如下:
设置柱形图宽度,bar() 方法使用 width 设置,barh() 方法使用 height 设置 height
实例
import matplotlib.pyplot as plt
import numpy as np
x = np.array([“Runoob-1”, “Runoob-2”, “Runoob-3”, “C-RUNOOB”])
y = np.array([12, 22, 6, 18])
plt.bar(x, y, width = 0.1)
plt.show()
显示结果如下:
实例
import matplotlib.pyplot as plt
import numpy as np
x = np.array([“Runoob-1”, “Runoob-2”, “Runoob-3”, “C-RUNOOB”])
y = np.array([12, 22, 6, 18])
plt.barh(x, y, height = 0.1)
plt.show()
显示结果如下:
Matplotlib 饼图
我们可以使用 pyplot 中的 pie() 方法来绘制饼图。
pie() 方法语法格式如下:
matplotlib.pyplot.pie(x, explode=None, labels=None, colors=None, autopct=None, pctdistance=0.6, shadow=False, labeldistance=1.1, startangle=0, radius=1, counterclock=True, wedgeprops=None, textprops=None, center=0, 0, frame=False, rotatelabels=False, *, normalize=None, data=None)[source]
参数说明:
x:浮点型数组,表示每个扇形的面积。
explode:数组,表示各个扇形之间的间隔,默认值为0。
labels:列表,各个扇形的标签,默认值为 None。
colors:数组,表示各个扇形的颜色,默认值为 None。
autopct:设置饼图内各个扇形百分比显示格式,%d%% 整数百分比,%0.1f 一位小数, %0.1f%% 一位小数百分比, %0.2f%% 两位小数百分比。
labeldistance:标签标记的绘制位置,相对于半径的比例,默认值为 1.1,如 <1则绘制在饼图内侧。
pctdistance::类似于 labeldistance,指定 autopct 的位置刻度,默认值为 0.6。
shadow::布尔值 True 或 False,设置饼图的阴影,默认为 False,不设置阴影。
radius::设置饼图的半径,默认为 1。
startangle::起始绘制饼图的角度,默认为从 x 轴正方向逆时针画起,如设定 =90 则从 y 轴正方向画起。
counterclock:布尔值,设置指针方向,默认为 True,即逆时针,False 为顺时针。
wedgeprops :字典类型,默认值 None。参数字典传递给 wedge 对象用来画一个饼图。例如:wedgeprops={‘linewidth’:5} 设置 wedge 线宽为5。
textprops :字典类型,默认值为:None。传递给 text 对象的字典参数,用于设置标签(labels)和比例文字的格式。
center :浮点类型的列表,默认值:(0,0)。用于设置图标中心位置。
frame :布尔类型,默认值:False。如果是 True,绘制带有表的轴框架。
rotatelabels :布尔类型,默认为 False。如果为 True,旋转每个 label 到指定的角度。
以下实例我们简单实用 pie() 来创建一个柱形图:
实例
import matplotlib.pyplot as plt
import numpy as np
y = np.array([35, 25, 25, 15])
plt.pie(y)
plt.show()
显示结果如下:
设置饼图各个扇形的标签与颜色:
实例
import matplotlib.pyplot as plt
import numpy as np
y = np.array([35, 25, 25, 15])
plt.pie(y,
labels=[‘A’,‘B’,‘C’,‘D’], # 设置饼图标签
colors=[“#d5695d”, “#5d8ca8”, “#65a479”, “#a564c9”], # 设置饼图颜色
)
plt.title(“RUNOOB Pie Test”) # 设置标题
plt.show()
显示结果如下:
突出显示第二个扇形,并格式化输出百分比:
实例
import matplotlib.pyplot as plt
import numpy as np
y = np.array([35, 25, 25, 15])
plt.pie(y,
labels=[‘A’,‘B’,‘C’,‘D’], # 设置饼图标签
colors=[“#d5695d”, “#5d8ca8”, “#65a479”, “#a564c9”], # 设置饼图颜色
explode=(0, 0.2, 0, 0), # 第二部分突出显示,值越大,距离中心越远
autopct=‘%.2f%%’, # 格式化输出百分比
)
plt.title(“RUNOOB Pie Test”)
plt.show()
Matplotlib 饼图
我们可以使用 pyplot 中的 pie() 方法来绘制饼图。
pie() 方法语法格式如下:
matplotlib.pyplot.pie(x, explode=None, labels=None, colors=None, autopct=None, pctdistance=0.6, shadow=False, labeldistance=1.1, startangle=0, radius=1, counterclock=True, wedgeprops=None, textprops=None, center=0, 0, frame=False, rotatelabels=False, *, normalize=None, data=None)[source]
参数说明:
x:浮点型数组,表示每个扇形的面积。
explode:数组,表示各个扇形之间的间隔,默认值为0。
labels:列表,各个扇形的标签,默认值为 None。
colors:数组,表示各个扇形的颜色,默认值为 None。
autopct:设置饼图内各个扇形百分比显示格式,%d%% 整数百分比,%0.1f 一位小数, %0.1f%% 一位小数百分比, %0.2f%% 两位小数百分比。
labeldistance:标签标记的绘制位置,相对于半径的比例,默认值为 1.1,如 <1则绘制在饼图内侧。
pctdistance::类似于 labeldistance,指定 autopct 的位置刻度,默认值为 0.6。
shadow::布尔值 True 或 False,设置饼图的阴影,默认为 False,不设置阴影。
radius::设置饼图的半径,默认为 1。
startangle::起始绘制饼图的角度,默认为从 x 轴正方向逆时针画起,如设定 =90 则从 y 轴正方向画起。
counterclock:布尔值,设置指针方向,默认为 True,即逆时针,False 为顺时针。
wedgeprops :字典类型,默认值 None。参数字典传递给 wedge 对象用来画一个饼图。例如:wedgeprops={‘linewidth’:5} 设置 wedge 线宽为5。
textprops :字典类型,默认值为:None。传递给 text 对象的字典参数,用于设置标签(labels)和比例文字的格式。
center :浮点类型的列表,默认值:(0,0)。用于设置图标中心位置。
frame :布尔类型,默认值:False。如果是 True,绘制带有表的轴框架。
rotatelabels :布尔类型,默认为 False。如果为 True,旋转每个 label 到指定的角度。
以下实例我们简单实用 pie() 来创建一个柱形图:
实例
import matplotlib.pyplot as plt
import numpy as np
y = np.array([35, 25, 25, 15])
plt.pie(y)
plt.show()
显示结果如下:
设置饼图各个扇形的标签与颜色:
实例
import matplotlib.pyplot as plt
import numpy as np
y = np.array([35, 25, 25, 15])
plt.pie(y,
labels=[‘A’,‘B’,‘C’,‘D’], # 设置饼图标签
colors=[“#d5695d”, “#5d8ca8”, “#65a479”, “#a564c9”], # 设置饼图颜色
)
plt.title(“RUNOOB Pie Test”) # 设置标题
plt.show()
显示结果如下:
突出显示第二个扇形,并格式化输出百分比:
import matplotlib.pyplot as plt
import numpy as np
y = np.array([35, 25, 25, 15])
plt.pie(y,
labels=[‘A’,‘B’,‘C’,‘D’], # 设置饼图标签
colors=[“#d5695d”, “#5d8ca8”, “#65a479”, “#a564c9”], # 设置饼图颜色
explode=(0, 0.2, 0, 0), # 第二部分突出显示,值越大,距离中心越远
autopct=‘%.2f%%’, # 格式化输出百分比
)
plt.title(“RUNOOB Pie Test”)
plt.show()