Python 使用tf-idf算法计算文档关键字权重,并生成词云

Python 使用tf-idf算法计算文档关键字权重,并生成词云

作者:虚坏叔叔
博客:https://xuhss.com

早餐店不会开到晚上,想吃的人早就来了!

Python 使用tf-idf算法计算文档关键字权重,并生成词云_第1张图片

1. 根据tf-idf计算一个文档的关键词或者短语:

代码如下:

  1. 注意需要安装pip install sklean
from re import split
from jieba.posseg import dt
from sklearn.feature_extraction.text import TfidfVectorizer
from collections import Counter
from time import time
import jieba


#pip install sklean


FLAGS = set('a an b f i j l n nr nrfg nrt ns nt nz s t v vi vn z eng'.split())

def cut(text):
    for sentence in split('[^a-zA-Z0-9\u4e00-\u9fa5]+', text.strip()):
        for w in dt.cut(sentence):
            if len(w.word) > 2 and w.flag in FLAGS:
                yield w.word

class TFIDF:
    def __init__(self, idf):
        self.idf = idf

    @classmethod
    def train(cls, texts):
        model = TfidfVectorizer(tokenizer=cut)
        model.fit(texts)
        idf = {w: model.idf_[i] for w, i in model.vocabulary_.items()}
        return cls(idf)

    def get_idf(self, word):
        return self.idf.get(word, max(self.idf.values()))

    def extract(self, text, top_n=10):
        counter = Counter()
        for w in cut(text):
            counter[w] += self.get_idf(w)
        #return [i[0:2] for i in counter.most_common(top_n)]
        return [i[0] for i in counter.most_common(top_n)]


if __name__ == '__main__':
    t0 = time()
    with open('./nlp-homework.txt', encoding='utf-8')as f:
        _texts = f.read().strip().split('\n')
        # print(_texts)
    tfidf = TFIDF.train(_texts)
    # print(_texts)
    for _text in _texts:
        seq_list=jieba.cut(_text,cut_all=True)  #全模式
        # seq_list=jieba.cut(_text,cut_all=False)  #精确模式
        # seq_list=jieba.cut_for_search(_text,)    #搜索引擎模式
        # print(list(seq_list))
        print(tfidf.extract(_text))
        with open('./resultciyun.txt','a+', encoding='utf-8') as g:
            for i in tfidf.extract(_text):
                g.write(str(i) + " ")
    print(time() - t0)

2. 生成词云:

代码如下:

  • 注意需要安装pip install wordcloud
  • 以及为了保证中文字体正常显示,需要下载SimSun.ttf字体,并且将这个字体包也放在和程序相同的目录下;
from wordcloud import WordCloud

filename = "resultciyun.txt"
with open(filename) as f:
 resultciyun = f.read()

wordcloud = WordCloud(font_path="simsun.ttf").generate(resultciyun)
# %pylab inline
import matplotlib.pyplot as plt
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis("off")
plt.show()

3 最后词云的图片

Python 使用tf-idf算法计算文档关键字权重,并生成词云_第2张图片

总结

最后的最后
由本人水平所限,难免有错误以及不足之处, 屏幕前的靓仔靓女们 如有发现,恳请指出!

最后,谢谢你看到这里,谢谢你认真对待我的努力,希望这篇博客对你有所帮助!

你轻轻地点了个赞,那将在我的心里世界增添一颗明亮而耀眼的星!

往期优质文章分享

  • C++ QT结合FFmpeg实战开发视频播放器-01环境的安装和项目部署
  • 解决QT问题:运行qmake:Project ERROR: Cannot run compiler ‘cl‘. Output:
  • 解决安装QT后MSVC2015 64bit配置无编译器和调试器问题
  • Qt中的套件提示no complier set in kit和no debugger,出现黄色感叹号问题解决(MSVC2017)
  • Python+selenium 自动化 - 实现自动导入、上传外部文件(不弹出windows窗口)

优质教程分享

  • 如果感觉文章看完了不过瘾,可以来我的其他 专栏 看一下哦~
  • 比如以下几个专栏:Python实战微信订餐小程序、Python量化交易实战、C++ QT实战类项目 和 算法学习专栏
  • 可以学习更多的关于C++/Python的相关内容哦!直接点击下面颜色字体就可以跳转啦!
学习路线指引(点击解锁) 知识定位 人群定位
Python实战微信订餐小程序 进阶级 本课程是python flask+微信小程序的完美结合,从项目搭建到腾讯云部署上线,打造一个全栈订餐系统。
Python量化交易实战 入门级 手把手带你打造一个易扩展、更安全、效率更高的量化交易系统
❤️ C++ QT结合FFmpeg实战开发视频播放器❤️ 难度偏高 分享学习QT成品的视频播放器源码,需要有扎实的C++知识!
游戏爱好者九万人社区 互助/吹水 九万人游戏爱好者社区,聊天互助,白嫖奖品
Python零基础到入门 Python初学者 针对没有经过系统学习的小伙伴,核心目的就是让我们能够快速学习Python的知识以达到入门

资料白嫖,温馨提示

关注下面卡片即刻获取更多编程知识,包括各种语言学习资料,上千套PPT模板和各种游戏源码素材等等资料。更多内容可自行查看哦!

请添加图片描述

你可能感兴趣的:(python,tf-idf,算法)