|利用 Prometheus 监控测试服务器集群实践详解

本文为霍格沃兹测试学院优秀学员的学习和实践总结,想一起系统进阶的同学文末加群交流。
公司有几台测试服务器(由于测试服务器本来性能和线上机器硬件就不一样,所以让运维老师去掉了测试服务器报警),测试团队自己使用 Prometheus
监控几台测试服务器,当出现故障的时候,把报警数据直接发送到企业微信中。

Prometheus 特点介绍

Prometheus(普罗米修斯)是一套开源的监控 & 报警 & 时间序列数据库的组合,起始是由 SoundCloud

公司开发的。随着发展,越来越多公司和组织接受采用 Prometheus,社区也十分活跃,他们便将它独立成开源项目,并且有公司来运作。Google SRE
的书内也曾提到跟他们 BorgMon 监控系统相似的实现是 Prometheus。现在最常见的 Kubernetes 容器管理系统中,通常会搭配
Prometheus 进行监控。
Prometheus 基本原理是通过 HTTP 协议周期性抓取被监控组件的状态,这样做的好处是任意组件只要提供 HTTP
接口就可以接入监控系统,不需要任何斯达克学院测试或者其他的集成过程。这样做非常适合虚拟化环境比如 VM 或者 Docker 。

Prometheus 应该是为数不多的适合 Docker、Mesos、Kubernetes 环境的监控系统之一。

输出被监控组件信息的 HTTP 接口被叫做 exporter 。目前互联网公司常用的组件大部分都有 exporter 可以直接使用,比如
Varnish、Haproxy、Nginx、MySQL、Linux 系统信息
(包括磁盘、内存、CPU、网络等等),具体支持的源看:https://github.com/prometheus。

与其他监控系统相比,Prometheus 的主要特点是:

  • 一个多维数据模型(时间序列由指标名称定义和设置键 / 值尺寸)。
  • 非常高效的存储,平均一个采样数据占~3.5bytes 左右,320 万的时间序列,每 30 秒采样,保持 60 天,消耗磁盘大概 228G。
  • 一种灵活的查询语言。
  • 不依赖分布式存储,单个服务器节点。
  • 时间集合通过 HTTP 上的 PULL 模型进行。
  • 通过中间网关支持推送时间。
  • 通过服务发现或静态配置发现目标。
  • 多种模式的图形和仪表板支持。

Prometheus 架构概览

它的服务过程是这样的 Prometheus daemon 负责定时去目标上抓取 metrics(指标) 数据,每个抓取目标需要暴露一个 HTTP
服务的接口给它定时抓取。

Prometheus

支持通过配置文件、文本文件、zookeeper、Consul、DNS SRV lookup 等方式指定抓取目标。支持很多方式的图表可视化,例如十分精美的
Grafana,自带的 Promdash,以及自身提供的模版引擎等等,还提供 HTTP API 的查询方式,自定义所需要的输出。

Alertmanager

Alertmanager 是独立于 Prometheus 的一个组件,可以支持 Prometheus 的查询语句,提供十分灵活的报警方式。

PushGateway:这个组件是支持 Client 主动推送 metrics 到 PushGateway,而 Prometheus 只是定时去
Gateway 上抓取数据。

如果有使用过 statsd 的用户,则会觉得这十分相似,只是 statsd 是直接发送给服务器端,而 Prometheus 主要还是靠进程主动去抓取。

Prometheus 的数据模型

Prometheus 从根本上所有的存储都是按时间序列去实现的,相同的 metrics(指标名称) 和 label(一个或多个标签)
组成一条时间序列,不同的 label 表示不同的时间序列。为了支持一些查询,有时还会临时产生一些时间序列存储。

metrics name&label 指标名称和标签。

每条时间序列是由唯一的” 指标名称” 和一组” 标签(key=value)” 的形式组成。

指标名称 :一般是给监测对像起一名字,例如 httprequeststotal 这样,它有一些命名规则,可以包字母数字 _
之类的的。通常是以应用名称开头 _ 监测对像 _ 数值类型 _
单位这样。例如:pushtotal、userloginmysqldurationseconds、appmemoryusage_bytes。
标签 :就是对一条时间序列不同维度的识别了,例如一个 http 请求用的是 POST 还是 GET,它的 endpoint
是什么,这时候就要用标签去标记了。最终形成的标识便是这样了:httprequeststotal{method=”POST”,endpoint=”/api/tracks”}。
记住,针对 httprequeststotal 这个 metrics name 无论是增加标签还是删除标签都会形成一条新的时间序列。

查询语句就可以跟据上面标签的组合来查询聚合结果了。

如果以传统数据库的理解来看这条语句,则可以考虑 httprequeststotal 是表名,标签是字段,而 timestamp 是主键,还有一个
float64 字段是值了。(Prometheus 里面所有值都是按 float64 存储)。

prometheus 四种数据类型

Gauge

Gauge 常规数值,例如 温度变化、内存使用变化。可变大,可变小。重启进程后,会被重置。例如:

memoryusagebytes{host=”master-01″} 100 <
抓取值、memoryusagebytes{host=”master-01″} 30、memoryusagebytes{host=”master-01″}
50、memoryusagebytes{host=”master-01″} 80 < 抓取值。

Histogram

Histogram(直方图)可以理解为柱状图的意思,常用于跟踪事件发生的规模,例如:请求耗时、响应大小。它特别之处是可以对记录的内容进行分组,提供
count 和 sum 全部值的功能。

例如:{小于 10=5 次,小于 20=1 次,小于 30=2 次},count=7 次,sum=7 次的求和值。

Summary

Summary 和 Histogram 十分相似,常用于跟踪事件发生的规模,例如:请求耗时、响应大小。同样提供 count 和 sum 全部值的功能。

例如:count=7 次,sum=7 次的值求值。

它提供一个 quantiles 的功能,可以按 % 比划分跟踪的结果。例如:quantile 取值 0.95,表示取采样值里面的 95% 数据。

依赖镜像

          1. docker pull prom/node-exporter
          2.     
          3.       2. docker pull prom/prometheus
          4.     
          5.       3. docker pull grafana/grafana
          6.     
          7.     
          8.     

部署 prometheus

配置

          1. mkdir /opt/prometheus
          2.     
          3.       2. cd /opt/prometheus/
          4.     
          5.       3. vim prometheus.yml
          6.     
          7.     
          8.     

yml 内容

yml 中配置了一个 prometheus 自己和一台 linux 监控

          1. global:
              
                    2.   scrape_interval:     60s
                        
                              3.   evaluation_interval: 60s
                                  
                                        4.   
                                            
                                                
                                                      5. scrape_configs:
                                                          
                                                                6. - job_name: prometheus
                                                                    
                                                                          7.     static_configs:
                                                                              
                                                                                    8. - targets: ['localhost:9090']
                                                                                        
                                                                                              9.         labels:
                                                                                                  
                                                                                                        10.           instance: prometheus
                                                                                                            
                                                                                                                  11.   
                                                                                                                      
                                                                                                                          
                                                                                                                                12. - job_name: linux
                                                                                                                                    
                                                                                                                                          13.     static_configs:
                                                                                                                                              
                                                                                                                                                    14. - targets: ['192.168.91.132:9100']
                                                                                                                                                        
                                                                                                                                                              15.         labels:
                                                                                                                                                                  
                                                                                                                                                                        16.           instance: localhost

启动 prometheus

启动的时候挂载了 prometheus.yml 文件

          1. docker run  -d \
              
                    2. -p 9090:9090 \
                        
                              3. -v /Users/qamac/Documents/script/docker_prometheus/prometheus.yml:/etc/prometheus/prometheus.yml  \
                                  
                                        4.   prom/prometheus

查看目标机器

          1. http://192.168.143.242:9090/targets
          2.     
          3.     
          4.     

如果出现 status 是 down 的情况说明没有连接成功 , 需要检查对应服务是否启动成功及对应端口
出现下图 , 说明配置成功。

查看采集 metrics

点击下面这个接口 , 会跳转到 metrics 页面 , 通过轮训的方式更新数据

          1. http://192.168.143.242:9090/metrics

部署 node-exporter

node-exporter 启动后会在服务器上启动一个进程采集数据 ,prometheus 会每隔几秒通过接口获取服务器的 metrics 数据 .
注意本地 mac 启动不能加–net="host"

          1.  docker run -d -p 9100:9100 \
          2.     
          3.       2. -v "/proc:/host/proc:ro" \
          4.     
          5.       3. -v "/sys:/host/sys:ro" \
          6.     
          7.       4. -v "/:/rootfs:ro" \
          8.     
          9.       5. --net="host" \
          10.    
          11.       6.   prom/node-exporter
          12.     
          13.     
          14.     

部署 Grafana

启动 grafana

          1. docker run -d -p 3000:3000 grafana
          2.     
          3.     
          4.     

grafana 地址

登录账号密码:admin/admin

          1. http://192.168.143.242:3000
          2.     
          3.     
          4.     

grafana 配置

prometheus 配置

配置 prometheus 数据源

grafana 模版

导入 dashboards 模版

          1. https://grafana.com/grafana/dashboards/8919
          2.     
          3.     
          4.     
展示

配置多个机器监控 , 需要在每一台机器部署 node-exporter.

配置告警规则

报警规则配置

rules.yml 中配置监控服务的内存、cpu、磁盘告警策略

          1. Server: '{{$labels.instance}}'
              
                    2.     summary: "{{$labels.instance}}: High Memory usage detected"
                        
                              3.     explain: " 内存使用量超过 90%,目前剩余量为:{{ $value }}M"
                                  
                                        4.     description: "{{$labels.instance}}: Memory usage is above 90% (current value is: {{ $value }})"
                                            
                                                  5.   
                                                      
                                                          
                                                                6. - alert: CPU 报警
                                                                    
                                                                          7.   expr: (100 - (avg by (instance)(irate(node_cpu_seconds_total{mode="idle"}[5m])) * 100)) > 90
                                                                              
                                                                                    8. for: 2m
                                                                                        
                                                                                              9.   labels:
                                                                                                  
                                                                                                        10.     team: node
                                                                                                            
                                                                                                                  11.   annotations:
                                                                                                                      
                                                                                                                            12. Alert_type: CPU 报警
                                                                                                                                
                                                                                                                                      13. Server: '{{$labels.instance}}'
                                                                                                                                          
                                                                                                                                                14.     explain: "CPU 使用量超过 90%,目前剩余量为:{{ $value }}"
                                                                                                                                                    
                                                                                                                                                          15.     summary: "{{$labels.instance}}: High CPU usage detected"
                                                                                                                                                              
                                                                                                                                                                    16.     description: "{{$labels.instance}}: CPU usage is above 90% (current value is: {{ $value }})"
                                                                                                                                                                        
                                                                                                                                                                              17.   
                                                                                                                                                                                  
                                                                                                                                                                                      
                                                                                                                                                                                            18. - alert: 磁盘报警
                                                                                                                                                                                                
                                                                                                                                                                                                      19.   expr: 100.0 - 100 * ((node_filesystem_avail_bytes{mountpoint=~"/", device!="rootfs"} / 1000 / 1000 ) / (node_filesystem_size_bytes{mountpoint=~"/", device!="rootfs"} / 1024 / 1024)) > 90
                                                                                                                                                                                                          
                                                                                                                                                                                                                20. for: 2m
                                                                                                                                                                                                                    
                                                                                                                                                                                                                          21.   labels:
                                                                                                                                                                                                                              
                                                                                                                                                                                                                                    22.     team: node
                                                                                                                                                                                                                                        
                                                                                                                                                                                                                                              23.   annotations:
                                                                                                                                                                                                                                                  
                                                                                                                                                                                                                                                        24. Alert_type: 磁盘报警
                                                                                                                                                                                                                                                            
                                                                                                                                                                                                                                                                  25. Server: '{{$labels.instance}}'
                                                                                                                                                                                                                                                                      
                                                                                                                                                                                                                                                                            26.     explain: " 磁盘使用量超过 90%,目前剩余量为:{{ $value }}G"
                                                                                                                                                                                                                                                                                
                                                                                                                                                                                                                                                                                      27.     summary: "{{$labels.instance}}: High Disk usage detected"
                                                                                                                                                                                                                                                                                          
                                                                                                                                                                                                                                                                                                28.     description: "{{$labels.instance}}: Disk usage is above 90% (current value is: {{ $value }})"
                                                                                                                                                                                                                                                                                                    
                                                                                                                                                                                                                                                                                                          29.   
                                                                                                                                                                                                                                                                                                              
                                                                                                                                                                                                                                                                                                                  
                                                                                                                                                                                                                                                                                                                        30. - alert: 服务器下线告警
                                                                                                                                                                                                                                                                                                                            
                                                                                                                                                                                                                                                                                                                                  31.     expr: up == 0
                                                                                                                                                                                                                                                                                                                                      
                                                                                                                                                                                                                                                                                                                                            32. for: 1m
                                                                                                                                                                                                                                                                                                                                                
                                                                                                                                                                                                                                                                                                                                                      33.     labels:
                                                                                                                                                                                                                                                                                                                                                          
                                                                                                                                                                                                                                                                                                                                                                34.       user: admin
                                                                                                                                                                                                                                                                                                                                                                    
                                                                                                                                                                                                                                                                                                                                                                          35.     annotations:
                                                                                                                                                                                                                                                                                                                                                                              
                                                                                                                                                                                                                                                                                                                                                                                    36.       summary: "Instance {{ $labels.instance }} down"
                                                                                                                                                                                                                                                                                                                                                                                        
                                                                                                                                                                                                                                                                                                                                                                                              37.       description: "{{ $labels.instance }} of job {{ $labels.job }} has been down for more than 1 minutes."
加载配置

prometheus.yml 加载 rule_files

          1. # Alertmanager configuration
              
                    2. alerting:
                        
                              3.    alertmanagers:
                                  
                                        4. - static_configs:
                                            
                                                  5. - targets: ["192.168.1.232:9093"]
                                                      
                                                            6. # - alertmanager:9093
                                                                
                                                                      7.   
                                                                          
                                                                              
                                                                                    8.   
                                                                                        
                                                                                            
                                                                                                  9. # Load rules once and periodically evaluate them according to the global 'evaluation_interval'.
                                                                                                      
                                                                                                            10. rule_files:
                                                                                                                
                                                                                                                      11. - "rules.yml"
启动 prometheus
          1. docker run -d -p 9090:9090 --name=prometheus1 \
          2.     
          3.       2. -v /Users/qamac/Documents/script/docker_prometheus/prometheus.yml:/etc/prometheus/prometheus.yml \
          4.     
          5.       3. -v /Users/qamac/Documents/script/docker_prometheus/memory_over.yml:/etc/prometheus/rules.yml \
          6.     
          7.       4. prom/prometheus
          8.     
          9.     
          10.    

部署 alertmanager

邮箱配置

可以通过邮件的形式发送告警邮件

          1. global:
          2.     
          3.       2.   smtp_smarthost: 'smtp.126.com:25'  #163 服务器
          4.     
          5.       3.   smtp_from: '[email protected]'        #发邮件的邮箱
          6.     
          7.       4.   smtp_auth_username: '[email protected]'  #发邮件的邮箱用户名,也就是你的邮箱
          8.     
          9.       5.   smtp_auth_password: 'xxxxx'        #发邮件的邮箱密码
          10.    
          11.       6.   
          12.     
          13.     
          14.       7. route:
          15.     
          16.       8.   group_by: ['alertname']
          17.     
          18.       9.   
          19.     
          20.     
          21.       10.   repeat_interval: 1h
          22.     
          23.       11.   
          24.     
          25.     
          26.       12.   receiver: live-monitoring
          27.     
          28.       13.   
          29.     
          30.     
          31.       14. receivers:
          32.     
          33.       15. - name: 'live-monitoring'
          34.     
          35.       16.   email_configs:
          36.     
          37.       17. - to: '[email protected]'        #收邮件的邮箱
          38.     
          39.     
          40.     

webhook 配置

因为我司用企业微信比较多,再加上平时也不怎么看邮件。所以想自定义一个 webhook 地址,把告警发到企业微信群中。

          1. global:
          2.     
          3.       2.   resolve_timeout: 5m
          4.     
          5.       3.   
          6.     
          7.     
          8.       4. route:
          9.     
          10.      5.   group_by: ['alertname']
          11.     
          12.       6.   group_wait: 10s
          13.     
          14.       7.   group_interval: 10s
          15.     
          16.       8.   repeat_interval: 1h
          17.     
          18.       9.   receiver: 'web.hook'
          19.     
          20.       10. receivers:
          21.     
          22.       11. - name: 'web.hook'
          23.     
          24.       12.   webhook_configs:
          25.     
          26.       13. - url: 'http://127.0.0.1:5000/send'
          27.     
          28.       14. inhibit_rules:
          29.     
          30.       15. - source_match:
          31.     
          32.       16.       severity: 'critical'
          33.     
          34.       17.     target_match:
          35.     
          36.       18.       severity: 'warning'
          37.     
          38.       19.     equal: ['alertname', 'dev', 'instance']
          39.     
          40.       20. ~
          41.     
          42.     
          43.     

启动 alertmanager

          1. docker run -d -p 9093:9093 -v /data/docker_alertmanager/simple.yml/:/etc/alertmanager/config.yml --name alertmanager1 prom/alertmanager
          2.     
          3.     
          4.     

alertmanager 的 web 页面

          1. http://192.168.1.232:9093/#/status
          2.     
          3.     
          4.     

下图是配置的告警方式

prometheus 中报警模块

          1. http://192.168.143.242:9090/alerts
          2.     
          3.     
          4.     

访问上面的地址 , 可以看到已经加载了告警规则

报警的几个状态

  • Inactive: 既不是 pending 也不是 firing 的时候状态变为 inactive
  • Pending:警报被激活,但是低于配置的持续时间。这里的持续时间即 rule 里的 FOR 字段设置的时间 . 改状态下不发送报警 .
  • Firing: 警报已被激活,而且超出设置的持续时间。该状态下发送报警 .

如下图的 for 字段是配置 2 分钟循环 , 第一次触发规则是 Pending 状态 , 如果超过 2 分钟就变成了 Firing 状态 ,

才发送告警

Webhook 服务

我们需要一个 webhook 服务接受报警的消息然后在发给企业微信群中 .

这里我使用 python flask 框架开发 web 服务 .

报警消息的格式

          1. {
          2.     
          3.       2. "status": "firing",
          4.     
          5.       3. "labels": {
          6.     
          7.       4. "instance": "localhost",
          8.     
          9.       5. "job": "linux",
          10.    
          11.       6. "user": "admin",
          12.     
          13.       7. "alertname": "NodeMemoryUsage"
          14.     
          15.       8. },
          16.     
          17.       9. "endsAt": "2020-01-06T08:38:59.334190464Z",
          18.     
          19.       10. "generatorURL": "http://13b226ded726:9090/graph?g0.expr=%28node_memory_MemTotal_bytes+-+%28node_memory_MemFree_bytes+%2B+node_memory_Buffers_bytes+%2B+node_memory_Cached_bytes%29%29+%2F+node_memory_MemTotal_bytes+%2A+100+%3E+5&g0.tab=1",
          20.     
          21.       11. "startsAt ": "2020-01-05T15:33:59.334190464Z",
          22.     
          23.       12. "annotations": {
          24.     
          25.       13. "description": "localhost: Memory usage is above 80% (current value is:22.168394749407362)",
          26.     
          27.       14. "summary": "localhost: High Memory usage detected"
          28.     
          29.       15. }
          30.     
          31.       16. }
          32.     
          33.     
          34.     

定义 send 接口

解析响应数据

Dockerfile

这里使用 docker 把服务打包成镜像部署

          1. FROM python3.7
          2.     
          3.       2. RUN pip3 install requests && pip3 install flask && pip3 install logzero && pip3 install gunicorn && pip3 install flask_script
          4.     
          5.       3. EXPOSE 5000
          6.     
          7.       4.   
          8.     
          9.     
          10.      5. ENTRYPOINT ["/run.sh"]
          11.     
          12.     
          13.     

企业微信报警

以上,期待与各位同学多交流探讨。

** _
来霍格沃兹测试开发学社,学习更多软件测试与测试开发的进阶技术,知识点涵盖web自动化测试 app自动化测试、接口自动化测试、测试框架、性能测试、安全测试、持续集成/持续交付/DevOps,测试左移、测试右移、精准测试、测试平台开发、测试管理等内容,课程技术涵盖bash、pytest、junit、selenium、appium、postman、requests、httprunner、jmeter、jenkins、docker、k8s、elk、sonarqube、jacoco、jvm-sandbox等相关技术,全面提升测试开发工程师的技术实力
QQ交流群:484590337
公众号 TestingStudio
视频资料领取:https://qrcode.testing-studio.com/f?from=CSDN&url=https://ceshiren.com/t/topic/15844
点击查看更多信息

你可能感兴趣的:(软件测试,测试开发,自动化测试,服务器,docker,kubernetes)