- 【Kubernetes】Kubernetes 容器集群管理系统概述
码农鑫哥的日常
kubernetes容器云原生1024程序员节
目录前言什么是云原生?容器编排介绍云原生容器云容器编排云平台SRE一、Kubernetes概述1.1K8S是什么?1.1.1作用1.2为什么要用K8S?1.2.1K8s目标1.2.2K8s对于docker的优势1.2.3K8s功能1.2.4K8s特性1.2.4.1弹性伸缩1.2.4.2自我修复1.2.4.3服务发现和负载均衡1.2.4.4自动发布(默认滚动发布模式)和回滚1.2.4.5集中化配置管
- QEMU 调试 TF-A开发环境建立(使用 QEMU 调试 TF-A (Trusted Firmware-A) 之二)
robin861109
使用QEMU调试TF-A硬件架构iot物联网
文章目录前言1`TF-A(TrustedFirmware-A)`概述2`Cortex-A57`3`ARMFVP`基板4GDB调试环境介绍4.1GDB简介4.2设置GDB调试环境4.3使用GDB5、配置QEMU调试TF-A开发环境5.1安装交叉工具链5.2安装其他必需的依赖项5.3克隆TF-A源代码5.4编译TF-A(TrustedFirmware-A)6、仿真调试过程7、实际调试过程举例前言QEM
- 深入解析React 18核心特性:构建未来级Web应用的全面指南
斯~内克
react知识点前端react.js前端框架
一、React18的里程碑意义React18作为近年来最具革命性的版本更新,标志着前端开发正式进入并发渲染时代。这个版本不仅带来了底层架构的革新,更重新定义了现代Web应用的性能标准与开发范式。根据npm官方统计,React18发布首周下载量突破1800万次,GitHub星标数新增3.4万,充分展现了开发者社区对其技术价值的认可。二、架构革命:并发模式深度解析2.1并发渲染原理//传统同步渲染模式
- 机器学习中的梯度到底是什么?(chat-gpt问答)
湫怿
机器学习gpt人工智能梯度
1、梯度是对损失函数求导吗?是的,梯度是对损失函数(或目标函数)求导数值化后的结果。梯度告诉我们目标函数在某个点上的方向性和变化率,这些信息是优化算法推进参数评估和更新的重要指标。在机器学习中,我们通过不断调整参数,使目标函数达到最小值,从而实现模型的训练和学习。2、为什么梯度要求偏导来求解?梯度是一个向量,它的方向指向函数值增加最快的方向,其大小表示函数值的变化率。为了确定梯度的方向和大小,需要
- Android Jetpack
qq_39892855
AndroidJetpack翻译Jetpack是一套让开发者更容易开发出完美安卓应用的组件。这个组件帮助你遵循最好的实践,让你减少写一些模板代码,简化复杂的task任务,能让你更加专注自己的业务代码。Jetpack使用的是androidx.*包名,与旧的android.*分开。这意味着它提供向后兼容性并且他会更频繁地更新,确保您始终可以访问最新和最好的Jetpack组件版本。特点加速开发组件可以单
- 红蓝对抗之Windows内网渗透实战
wespten
网络安全AI+渗透测试代码审计等保全栈网络安全开发windows
无论是渗透测试,还是红蓝对抗,目的都是暴露风险,促进提升安全水平。企业往往在外网布置重兵把守,而内网防护相对来说千疮百孔,所以渗透高手往往通过攻击员工电脑、外网服务、职场WiFi等方式进入内网,然后发起内网渗透。而国内外红蓝对抗服务和开源攻击工具大多数以攻击Windows域为主,主要原因是域控拥有上帝能力,可以控制域内所有员工电脑,进而利用员工的合法权限获取目标权限和数据,达成渗透目的。以蓝军攻击
- 如何用爬虫根据关键词获取商品列表:一份简单易懂的代码示例
API小爬虫
爬虫
在当今数字化时代,网络爬虫已经成为数据收集和分析的强大工具。无论是市场调研、价格监控还是产品分析,爬虫都能帮助我们快速获取大量有价值的信息。今天,我们就来探讨如何通过编写一个简单的爬虫程序,根据关键词获取商品列表。以下是一个基于Python语言的代码示例,适合初学者学习和实践。一、准备工作在开始编写爬虫之前,我们需要准备以下工具和库:Python环境:确保你的电脑上安装了Python。推荐使用Py
- 打造高性能的react
大鸡腿最好吃
react.js
根本目的就是减少重复渲染使用使用shouldComponentUpdate规避冗余的更新逻辑shouldComponentUpdate触发的条件是只要父组件更新了,就会被触发,在里面判断传入的pros是否改变,不变则返回falsePureComponent+Immutable.jsPureComponent其实就是内置了对shouldComponentUpdate的实现,不过其对props的比对是
- 计算机视觉算法实战——驾驶员玩手机检测(主页有源码)
喵了个AI
计算机视觉实战项目计算机视觉算法智能手机
✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨1.领域简介:玩手机检测的重要性与技术挑战驾驶员玩手机检测是智能交通安全领域的核心课题。根据NHTSA数据,美国每年因手机使用导致的交通事故超过3000起,中国公安部的统计显示开车使用手机的事故率是正常驾驶的23倍。该技术通过实时监测驾驶员手部动作和视线方向,识别非法使用手机行为,在以
- 【Python】构建Web应用的首选:Flask框架基础与实战
萧鼎
python基础到进阶教程python前端flask
构建Web应用的首选:Flask框架基础与实战在Python的Web开发生态中,Flask框架以其轻量、灵活和易用的特性成为构建Web应用的首选之一。无论是快速搭建一个小型应用原型,还是构建复杂的后端服务,Flask都提供了便捷的接口和丰富的扩展支持。本博客将介绍Flask的基础知识和核心概念,并通过一个简单的实例展示如何用Flask构建Web应用。一、Flask框架简介Flask是由ArminR
- 安全测试数据的分析、报告及业务应用
蚂蚁质量
安全测试质量体系安全网络web安全
一、安全测试指标与测量目标在风险分析和管理流程中,有效运用安全测试数据的前提是准确定义安全测试指标和测量目标。例如,通过统计安全测试中发现的漏洞总数,能够量化应用程序的安全状态,还可据此设定软件安全测试的目标,如在应用程序投入生产环境前,将漏洞数量降低至可接受的最低限度。另一个具有管理价值的目标是将应用程序的安全状态与安全基线进行对比,以此评估应用安全流程的改进情况。假设安全指标基线对应的是仅完成
- Android Jetpack介绍
Gary.Mi
Android
1.文档背景本文是Jetpack介绍系列文档的开篇,是对Jetpack整体的介绍,后续会对其中的各个组件分别单独说明。2.官方简介Jetpack是一套库、工具和指南,可帮助开发者更轻松地编写优质应用。使用这些组件,可帮助开发者遵循最佳实践,摆脱编写样板代码的工作并简化复杂任务,使开发者将精力集中放在所需的代码上。Jetpack包含与平台API解除捆绑的androidx.*软件包库。这意味着,它可以
- linux清空文件夹的命令
getapi
linuxgithubgit
在Linux系统中,清空文件夹(即删除文件夹中的所有内容,但保留文件夹本身)可以通过多种方法实现。以下是几种常见的命令和操作方式:方法1:使用rm命令rm是一个强大的命令,用于删除文件和目录。要清空文件夹的内容,可以使用以下命令:rm-rf/path/to/folder/*解释:rm:删除命令。-r:递归删除,用于处理目录及其子目录。-f:强制删除,无需确认。/path/to/folder/*:指
- 深入解析 Vue 3 Teleport:原理、应用与最佳实践
赵大仁
前端Vue.js技术vue.jsjavascript前端
深入解析Vue3Teleport:原理、应用与最佳实践1.引言Vue3引入了Teleport组件,它可以让我们将组件的渲染位置从当前组件层级移动到DOM的其他位置,而不影响Vue的响应式和组件状态管理。在开发中,我们经常遇到模态框、通知、弹窗、工具提示(Tooltip)等UI组件,这些组件通常需要被渲染到body或特定DOM节点,以避免z-index层级问题。Vue3的Teleport解决了这个问
- 大型语言模型与强化学习的融合:迈向通用人工智能的新范式——基于基础复现的实验平台构建
(initial)
大模型科普人工智能强化学习
1.引言大型语言模型(LLM)在自然语言处理领域的突破,展现了强大的知识存储、推理和生成能力,为人工智能带来了新的可能性。强化学习(RL)作为一种通过与环境交互学习最优策略的方法,在智能体训练中发挥着重要作用。本文旨在探索LLM与RL的深度融合,分析LLM如何赋能RL,并阐述这种融合对于迈向通用人工智能(AGI)的意义。为了更好地理解这一融合的潜力,我们基于“LargeLanguageModela
- 深入解析 React Diff 算法:原理、优化与实践
赵大仁
前端技术jsreact.js前端前端框架
深入解析ReactDiff算法:原理、优化与实践1.引言React作为前端领域的标杆框架,采用虚拟DOM(VirtualDOM)来提升UI更新性能。React的Diff算法(Reconciliation)是虚拟DOM运行机制的核心,它决定了如何高效地对比新旧DOM并执行最少的操作来更新UI。本篇文章将深入探讨ReactDiff算法的原理、优化策略,并通过生动的示例解析其工作方式,让你能够更直观地理
- 目标检测中衡量模型速度和精度的指标:FPS和mAP
asdfg1258963
目标检测_ai目标检测人工智能
“FPS”和“mAP”分别衡量了模型的速度和精度。FPS(FramesPerSecond)定义:FPS是“每秒传输帧数”的缩写,用于衡量计算机视觉系统(如目标检测、图像识别等)的实时性能。它表示系统每秒钟能够处理的图像或视频帧的数量。重要性:在实时应用中,如自动驾驶、视频监控等,FPS是一个关键指标。高FPS意味着系统能够快速处理输入的图像数据,实现实时响应。计算方式:FPS可以通过以下公式计算:
- 准确率(Precision)和召回率(Recall)
asdfg1258963
目标检测_ai机器学习算法人工智能
准确率(Precision)定义:准确率是指在模型预测为正的样本中,真正为正的样本所占的比例。它关注的是模型预测的准确性。计算公式:Precision=TPTP+FP\text{Precision}=\frac{\text{TP}}{\text{TP}+\text{FP}}Precision=TP+FPTP其中:TP(TruePositive):真正例,模型正确预测为正的样本数。FP(FalseP
- 强化学习-Chapter2-贝尔曼方程
Rsbs
算法机器学习概率论
强化学习-Chapter2-贝尔曼方程贝尔曼方程推导继续展开贝尔曼方程的矩阵形式状态值的求解动作价值函数与状态价值函数的关系贝尔曼方程推导Vπ(s)=E[Gt∣St=s]=E[rt+1+(γrt+2+…)∣St=s]=E[rt+1+γGt+1∣St=s]=∑a∈Aπ(s,a)∑s′∈SPs→s′a⋅(Rs→s′a+γE[Gt+1∣St+1=s′])=∑a∈Aπ(s,a)∑s′∈SPs→s′a⋅(R
- 太速科技-基于3U VPX的 Jetson Xavier NX GPU计算主板
北京太速科技股份有限公司
人工智能
基于3UVPX的JetsonXavierNXGPU计算主板一、产品概述基于3UVPX的JetsonXavierNXGPU计算主板,是AI人工智能的低功耗计算平台,是LINUX环境下软件开发等的理想工具,拥有VPX标准连接器和特性的接口。二、板卡原理框图三、板卡外扩功能P0接口电源输入+12V,板卡总功耗60W以内P1接口1路RS422接口,一路GigabitEthernet前面板接口MICROUS
- C语言字符相加得到什么?字符串相加呢?
GKDf1sh
c语言javaservlet开发语言
#include int main(void){ char d = '1'+'2'; printf("%c",d);//输出结果为c,ASSII码的099恰好是c printf("%d\n",d);//输出结果为99,即ASCII码的十进制数相加(49+50),得出结论两个字符相加的结果为ASCII码相加的结果 //字符串相加的结果又是什么呢? cha
- 本月之后,华为再无Windows PC,微软亲自“扶鸿蒙上马”
佳晓晓
pygamescikit-learn网络iphonevue.js
在当前中美博弈的复杂大环境下,华为这一科技巨头一直备受关注,近期更是传出重磅消息:微软对华为的Windows系统供货许可本月即将到期,且并无续约迹象。这意味着此后华为PC将无法再使用Windows系统,被迫全面转向国产方案,而鸿蒙PC系统则有望借此契机正式登上舞台。华为PC的现状与转变契机自去年8月华为上架MateBookGT14后,已有长达7个月的时间没有新品PC推出。这期间,华为PC的销量也受
- Android 架构MVC MVP MVVM+实例
2401_89284222
android架构mvc
1.View接收用户交互请求2.View将请求转交给ViewModel3.ViewModel操作Model数据更新4.Model更新完数据,通知ViewModel数据发生变化5.ViewModel更新View数据View/Model的变动,只要改其中一方,另一方都能够及时更新到MVVM的优点1.提高可维护性。DataBinding可以实现双向的交互,使得视图和控制层之间的耦合程度进一步降低,分离更
- Java基础编程 找素数
是盈盈啊
笔记
说明:除了1和它本身以外,不能被其他正整数整除,就叫素数。方法是否需要接收数据进行处理?需要接收101以及200,以便找该区间中的素数。方法是否需要返回数据?需要返回找到的素数个数。方法内部的实现逻辑:使用for循环来产生如101到200之间的每个数;每拿到一个数,判断该数是否是素数;判断规则是:从2开始遍历到该数的一半的数据,看是否有数据可以整除它,有则不是素数,没有则是素数;根据判
- 前端面试题---vue项目打包时, 内存不足了怎么办 为什么会出现这样的情况
*星之卡比*
前端vue.jsjavascript
Vue项目打包时如果出现内存不足(OOM,OutofMemory)简称就是OOM,通常是因为项目代码量较大、依赖过多、打包时Webpack需要处理的文件过多,导致Node.js运行时超出了默认的内存限制。一、为什么会出现内存不足?项目过大:项目代码文件过多,Webpack需要处理的内容太多。第三方库过多:node_modules体积过大,依赖库多且未进行优化。SourceMap过大:默认produ
- 基于Docker及Kubernetes技术构建容器云(PaaS)平台概述_基于kubernetes iaas(1)
2401_83946044
程序员dockerkubernetespaas
|组成模块|模块说明||—|—||AppRouter[流量接入层]|接收用户请求,并转发到不同的AppRuntime。||AppRuntime[应用运行层]|应用运行环境,为各个应用提供基本的运行引擎,从而让app能够运行起来。||Services[基础服务层]|各个通用基础服务,主要是对主流的服务提供通用的接入,例如数据库等。||PlatformControl[平台控制层]|整个平台的控制中心,
- 深入浅出C++ STL:统领STL全局
有梦想的电信狗
《C++语法精粹》——c++stl数据结构算法开发语言idevisualstudio
深入浅出C++STL:统领STL全局深入浅出C++STL:统领STL全局github主页地址前言一、STL的前世今生1.1什么是STL?1.2STL版本演进二、STL六大核心组件详解2.1容器(Containers)容器性能对照表2.2算法(Algorithms)2.3迭代器(Iterators)2.4仿函数(Functors)2.5适配器(Adapters)2.6空间配置器(Allocators
- 静态顺序表
有梦想的电信狗
《数据结构与算法》数据结构c语言c++链表
顺序表顺序表和链表都是线性表的一种,此处介绍顺序表数据的存储结构有分为逻辑存储结构和物理存储结构。顺序表和链表(之后的文章会详解)实际上都是线性表,是因为他们的逻辑存储关系都是线性的,只是因为在计算机内存中存储的方式(物理存储结构)不同。两种物理存储结构各有优劣,作为开发者,在不同的场景需要灵活选用相应的数据结构来存储数据,来促使我们的程序更高效的运行。静态顺序表静态顺序表,顾名思义,即为顺序表的
- 机器学习中的梯度下降是什么意思?
yuanpan
机器学习人工智能
梯度下降(GradientDescent)是机器学习中一种常用的优化算法,用于最小化损失函数(LossFunction)。通过迭代调整模型参数,梯度下降帮助模型逐步逼近最优解,从而提升模型的性能。1.核心思想梯度下降的核心思想是利用损失函数的梯度(即导数)来指导参数的更新方向。具体来说:梯度:梯度是损失函数对模型参数的偏导数,表示损失函数在当前参数点上的变化率。下降:通过沿着梯度的反方向(即损失函
- MVVM架构在Android中的DataBinding实现案例
朱佳顺
本文还有配套的精品资源,点击获取简介:本实例展示了如何利用Google官方DataBinding库在Android应用中实现MVVM架构模式。通过DataBinding库,开发者能够简洁地将数据绑定到UI元素,从而提高代码的可读性和可维护性。实例中包括了MVVM架构的核心概念,以及如何使用表达式语言、Observable对象、BindingAdapter、Layout文件和DataBindingU
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理