一、简介
串口全称叫做串行接口,串行接口指的是数据一个一个的按顺序传输,通信线路简单。使用两条线即可.
实现双向通信,一条用于发送,一条用于接收。串口通信距离远,但是速度相对会低,串口是一种很常用的工业接口。
关于串口的基础知识以及通行原理、通行数据格式等之类的问题。串口(UART)在嵌入式 Linux 系统中常作为系统的标准输入、输出设备,系统运行过程产生的打印信息通过串口输出;同理,串口也作为系统的标准输入设备,用户通过串口与 Linux 系统进行交互。
更加详细介绍说明读者可自行查阅相关资料。
二、环境搭建
本次测试uart通信的应用例程是运行在ubuntu pc上的;当然也是可以运行在linux开发板 或相关linux设备上的。
如果在Linux开发板上运行,需要有交叉编译工具。
本次测试实现的是自发自收,在PC上插入一个串口模块(uart转CH340模块,其它模块也可),然后将RX 引脚 与TX引脚 通过杜邦线连接即可。
三、例程代码
本次代码会使用单独的一个c文件用来编写uart代码,用以接收数据并在终端打印;
代码如下:
/***************************************************************
Copyright © OneFu Co., Ltd. 1998-2022. All rights reserved.
文件名 : uart.c
作者 : waterfxw
版本 : V1.0
描述 : uart 示例代码
其他 : 主要是测试 使用cmake
日志 : 初版 V1.0 2023/03/20 waterfxw创建
***************************************************************/
#define _GNU_SOURCE //在源文件开头定义_GNU_SOURCE 宏
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
typedef struct uart_hardware_cfg {
unsigned int baudrate; /* 波特率 */
unsigned char dbit; /* 数据位 */
char parity; /* 奇偶校验 */
unsigned char sbit; /* 停止位 */
} uart_cfg_t;
static struct termios old_cfg; //用于保存终端的配置参数
static int fd; //串口终端对应的文件描述符
/**
** 串口初始化操作
** 参数 device 表示串口终端的设备节点
**/
static int uart_init(const char *device) {
/* 打开串口终端 */
fd = open(device, O_RDWR | O_NOCTTY);
if (0 > fd) {
fprintf(stderr, "open error: %s: %s\n", device, strerror(errno));
return -1;
}
/* 获取串口当前的配置参数 */
if (0 > tcgetattr(fd, &old_cfg)) {
fprintf(stderr, "tcgetattr error: %s\n", strerror(errno));
close(fd);
return -1;
}
return 0;
}
/**
** 串口配置
** 参数 cfg 指向一个 uart_cfg_t 结构体对象
**/
static int uart_cfg(const uart_cfg_t *cfg) {
struct termios new_cfg = {0}; //将 new_cfg 对象清零
speed_t speed;
/* 设置为原始模式 */
cfmakeraw(&new_cfg);
/* 使能接收 */
new_cfg.c_cflag |= CREAD;
/* 设置波特率 */
switch (cfg->baudrate) {
case 1200: speed = B1200;
break;
case 1800: speed = B1800;
break;
case 2400: speed = B2400;
break;
case 4800: speed = B4800;
break;
case 9600: speed = B9600;
break;
case 19200: speed = B19200;
break;
case 38400: speed = B38400;
break;
case 57600: speed = B57600;
break;
case 115200: speed = B115200;
break;
case 230400: speed = B230400;
break;
case 460800: speed = B460800;
break;
case 500000: speed = B500000;
break;
default: //默认配置为 115200
speed = B115200;
printf("default baud rate: 115200\n");
break;
}
if (0 > cfsetspeed(&new_cfg, speed)) {
fprintf(stderr, "cfsetspeed error: %s\n", strerror(errno));
return -1;
}
/* 设置数据位大小 */
new_cfg.c_cflag &= ~CSIZE; //将数据位相关的比特位清零
switch (cfg->dbit) {
case 5:
new_cfg.c_cflag |= CS5;
break;
case 6:
new_cfg.c_cflag |= CS6;
break;
case 7:
new_cfg.c_cflag |= CS7;
break;
case 8:
new_cfg.c_cflag |= CS8;
break;
default: //默认数据位大小为 8
new_cfg.c_cflag |= CS8;
printf("default data bit size: 8\n");
break;
}
/* 设置奇偶校验 */
switch (cfg->parity) {
case 'N': //无校验
new_cfg.c_cflag &= ~PARENB;
new_cfg.c_iflag &= ~INPCK;
break;
case 'O': //奇校验
new_cfg.c_cflag |= (PARODD | PARENB);
new_cfg.c_iflag |= INPCK;
break;
case 'E': //偶校验
new_cfg.c_cflag |= PARENB;
new_cfg.c_cflag &= ~PARODD; /* 清除 PARODD 标志,配置为偶校验 */
new_cfg.c_iflag |= INPCK;
break;
default: //默认配置为无校验
new_cfg.c_cflag &= ~PARENB;
new_cfg.c_iflag &= ~INPCK;
printf("default parity: N\n");
break;
}
/* 设置停止位 */
switch (cfg->sbit) {
case 1: //1 个停止位
new_cfg.c_cflag &= ~CSTOPB;
break;
case 2: //2 个停止位
new_cfg.c_cflag |= CSTOPB;
break;
default: //默认配置为 1 个停止位
new_cfg.c_cflag &= ~CSTOPB;
printf("default stop bit size: 1\n");
break;
}
/* 将 MIN 和 TIME 设置为 0 */
new_cfg.c_cc[VTIME] = 0;
new_cfg.c_cc[VMIN] = 0;
/* 清空缓冲区 */
if (0 > tcflush(fd, TCIOFLUSH)) {
fprintf(stderr, "tcflush error: %s\n", strerror(errno));
return -1;
}
/* 写入配置、使配置生效 */
if (0 > tcsetattr(fd, TCSANOW, &new_cfg)) {
fprintf(stderr, "tcsetattr error: %s\n", strerror(errno));
return -1;
}
/* 配置 OK 退出 */
return 0;
}
/***
--dev=/dev/ttyUSB0
--brate=115200
--dbit=8
--parity=N
--sbit=1
--type=read
***/
/**打印帮助信息**/
static void show_help(const char *app) {
printf("Usage: %s [选项]\n"
"\n 必选选项:\n"
" --dev=DEVICE 指定串口终端设备名称, 譬如--dev=/dev/ttyUSB0\n"
" --type=TYPE 指定操作类型, 读串口还是写串口, 譬如--type=read(read 表示读、write 表示写、readwrite表示读写、其它值无效)\n"
"\n 可选选项:\n"
" --brate=SPEED 指定串口波特率, 譬如--brate=115200\n"
" --dbit=SIZE 指定串口数据位个数, 譬如--dbit=8(可取值为: 5/6/7/8)\n"
" --parity=PARITY 指定串口奇偶校验方式, 譬如--parity=N(N 表示无校验、O 表示奇校验、E 表示偶校验)\n"
" --sbit=SIZE 指定串口停止位个数, 譬如--sbit=1(可取值为: 1/2)\n"
" --help 查看本程序使用帮助信息\n\n", app);
}
/**
** 信号处理函数,当串口有数据可读时,会跳转到该函数执行
**/
static void io_handler(int sig, siginfo_t *info, void *context) {
unsigned char buf[10] = {0};
int ret;
int n;
if(SIGRTMIN != sig)
return;
/* 判断串口是否有数据可读 */
if (POLL_IN == info->si_code) {
ret = read(fd, buf, 8); //一次最多读 8 个字节数据
printf("[ ");
for (n = 0; n < ret; n++)
printf("0x%hhx ", buf[n]);
printf("]\n");
}
}
/**
** 异步 I/O 初始化函数
**/
static void async_io_init(void) {
struct sigaction sigatn;
int flag;
/* 使能异步 I/O */
flag = fcntl(fd, F_GETFL); //使能串口的异步 I/O 功能
flag |= O_ASYNC;
fcntl(fd, F_SETFL, flag);
/* 设置异步 I/O 的所有者 */
fcntl(fd, F_SETOWN, getpid());
/* 指定实时信号 SIGRTMIN 作为异步 I/O 通知信号 */
fcntl(fd, F_SETSIG, SIGRTMIN);
/* 为实时信号 SIGRTMIN 注册信号处理函数 */
sigatn.sa_sigaction = io_handler; //当串口有数据可读时,会跳转到 io_handler 函数
sigatn.sa_flags = SA_SIGINFO;
sigemptyset(&sigatn.sa_mask);
sigaction(SIGRTMIN, &sigatn, NULL);
}
int main(int argc, char *argv[])
{
uart_cfg_t cfg = {0};
char *device = NULL;
int rw_flag = -1;
unsigned char w_buf[10] = {0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88}; //通过串口发送出去的数据
int n;
printf("解析出参数 \n");
/* 解析出参数 */
for (n = 1; n < argc; n++) {
if (!strncmp("--dev=", argv[n], 6))
device = &argv[n][6];
else if (!strncmp("--brate=", argv[n], 8))
cfg.baudrate = atoi(&argv[n][8]);
else if (!strncmp("--dbit=", argv[n], 7))
cfg.dbit = atoi(&argv[n][7]);
else if (!strncmp("--parity=", argv[n], 9))
cfg.parity = argv[n][9];
else if (!strncmp("--sbit=", argv[n], 7))
cfg.sbit = atoi(&argv[n][7]);
else if (!strncmp("--type=", argv[n], 7)) {
if (!strcmp("read", &argv[n][7]))
rw_flag = 0; //读
if (!strcmp("write", &argv[n][7]))
rw_flag = 1; //写
if (!strcmp("readwrite", &argv[n][7]))
rw_flag = 2; //读写
}
else if (!strcmp("--help", argv[n])) {
show_help(argv[0]); //打印帮助信息
exit(EXIT_SUCCESS);
}
}
if (NULL == device || -1 == rw_flag) {
fprintf(stderr, "Error: the device and read|write type must be set!\n");
show_help(argv[0]);
exit(EXIT_FAILURE);
}
printf("串口初始化 \n");
/* 串口初始化 */
if (uart_init(device))
exit(EXIT_FAILURE);
printf("串口配置 \n");
/* 串口配置 */
if (uart_cfg(&cfg)) {
tcsetattr(fd, TCSANOW, &old_cfg); //恢复到之前的配置
close(fd);
exit(EXIT_FAILURE);
}
printf("读|写串口 \n");
/* 读|写串口 */
switch (rw_flag) {
case 0: //读串口数据
async_io_init(); //我们使用异步 I/O 方式读取串口的数据,调用该函数去初始化串口的异步 I/O
for ( ; ; )
sleep(1); //进入休眠、等待有数据可读,有数据可读之后就会跳转到 io_handler()函数
break;
case 1: //向串口写入数据
for ( ; ; ) { //循环向串口写入数据
write(fd, w_buf, 8); //一次向串口写入 8 个字节
sleep(1); //间隔 1 秒钟
}
break;
case 2: //向串口写入数据
async_io_init(); //我们使用异步 I/O 方式读取串口的数据,调用该函数去初始化串口的异步 I/O
for ( ; ; ) { //循环向串口写入数据
write(fd, w_buf, 8); //一次向串口写入 8 个字节
sleep(2); //间隔 1 秒钟
}
break;
}
/* 退出 */
tcsetattr(fd, TCSANOW, &old_cfg); //恢复到之前的配置
close(fd);
exit(EXIT_SUCCESS);
}
上述是uart收发源码。
在这次例程中我们使用cmake来编译,如果有不熟悉cmake的可自行查阅相关资料,或作者的另一篇文章:linux开发工具-之-CMake简单例程[初见]
在uart.c文件的同级目录下创建文件“CMakeLists.txt”
编写cmake,在“CMakeLists.txt”中编写一下内容:
project(UART)
add_executable(uart ./uart.c)
四、编译
首先:cmake编译:
cmake ./
运行cmake后,在同级目录下会得到一个Makefile文件
其次再进行Makefile编译,Makefile编译直接运行make即可
make
五、运行验证
查看文件类型
file uart
作者想串口模块插入ubuntu PC后得到的设备是 “/dev/ttyUSB0”
可通过“ls -a /dev/tty*” 命令查看,如下:
运行可执行程序uart;
查看uart的帮助信息:
./uart --help
进行读写运行测试命令:
sudo ./uart --dev=/dev/ttyUSB0 --type=readwrite
效果如下图:
至此,uart的读写测试完成。
此例程只是简单实现读写,在实际运用中会比这复杂很多。
cmake相关文章,作者后续会持续更新,尽请关注。