说明
此代码在matlab
上搭建了简单的生成对抗性网络,用来生成手写数字图像。
网络中生成器和鉴别器的隐藏层均为2层,且都是全连接层,是一个比较简单的网络结构。主要用来说明怎么在matlab
上搭建GAN(Generative Adversarial Net)
网络。
网络模型
如图1所示,是生成器网络模型,一个输入层,两个全连接层。输入的数据是100×1
的噪声,输出是784×1
的向量,将输出进行reshape
之后,就可以得到一张28×28
的手写数字图像。
如图2所示,是将生成器和鉴别器连接起来之后的模型。这里主要想说明一点,在进行网络参数更新的时候,为了得到生成器参数的偏导数,
bp
过程需要鉴别器,再传到生成器。
到这里就产生了一个疑问:不是说更新生成器的时候,鉴别网络的参数需要固定住不变吗,如果bp过程需要经过鉴别网络,那应该怎么保持鉴别网络的参数不变呢?
其实bp
的时候,只是算出来了各个网络层参数对于loss
的偏导数,在求生成器的参数的偏导数的时候,鉴别网络的参数的偏导数也被求出来了。但是求出来了偏导数,不一定就要对网络进行更新。也就是求出来了网络loss
对生成器和鉴别器的偏导数,但是只使用到了生成器的偏导数来更新生成器。
More
这个是我写的、在
matlab
上实现GAN
网络的另外一份代码,里面的网络模型使用到了卷积、反卷积等。
GAN 网络matlab实现在
matlab
平台上,使用MatConvNet
搭建GAN
网络的例子
使用MatConvNet搭建GAN网络mnist_uint8.mat 下载地址
实例
实例1
代码在github
:gan_adam.m
这里使用上面提到的网络结构来生成手写数字图片,使用到了Adam
算法作为优化器来更新GAN
网络。
clear;
clc;
% -----------加载数据
load('mnist_uint8', 'train_x');
train_x = double(reshape(train_x, 60000, 28, 28))/255;
train_x = permute(train_x,[1,3,2]);
train_x = reshape(train_x, 60000, 784);
% -----------------定义模型
generator = nnsetup([100, 512, 784]);
discriminator = nnsetup([784, 512, 1]);
% -----------开始训练
batch_size = 60;
epoch = 100;
images_num = 60000;
batch_num = ceil(images_num / batch_size);
learning_rate = 0.001;
for e=1:epoch
kk = randperm(images_num);
for t=1:batch_num
% 准备数据
images_real = train_x(kk((t - 1) * batch_size + 1:t * batch_size), :, :);
noise = unifrnd(-1, 1, batch_size, 100);
% 开始训练
% -----------更新generator,固定discriminator
generator = nnff(generator, noise);
images_fake = generator.layers{generator.layers_count}.a;
discriminator = nnff(discriminator, images_fake);
logits_fake = discriminator.layers{discriminator.layers_count}.z;
discriminator = nnbp_d(discriminator, logits_fake, ones(batch_size, 1));
generator = nnbp_g(generator, discriminator);
generator = nnapplygrade(generator, learning_rate);
% -----------更新discriminator,固定generator
generator = nnff(generator, noise);
images_fake = generator.layers{generator.layers_count}.a;
images = [images_fake;images_real];
discriminator = nnff(discriminator, images);
logits = discriminator.layers{discriminator.layers_count}.z;
labels = [zeros(batch_size,1);ones(batch_size,1)];
discriminator = nnbp_d(discriminator, logits, labels);
discriminator = nnapplygrade(discriminator, learning_rate);
% ----------------输出loss
if t == batch_num
c_loss = sigmoid_cross_entropy(logits(1:batch_size), ones(batch_size, 1));
d_loss = sigmoid_cross_entropy(logits, labels);
fprintf('c_loss:"%f",d_loss:"%f"\n',c_loss, d_loss);
end
if t == batch_num
path = ['./pics/epoch_',int2str(e),'_t_',int2str(t),'.png'];
save_images(images_fake, [4, 4], path);
fprintf('save_sample:%s\n', path);
end
end
end
% sigmoid激活函数
function output = sigmoid(x)
output =1./(1+exp(-x));
end
% relu
function output = relu(x)
output = max(x, 0);
end
% relu对x的导数
function output = delta_relu(x)
output = max(x,0);
output(output>0) = 1;
end
% 交叉熵损失函数,此处的logits是未经过sigmoid激活的
% https://www.tensorflow.org/api_docs/python/tf/nn/sigmoid_cross_entropy_with_logits
function result = sigmoid_cross_entropy(logits, labels)
result = max(logits, 0) - logits .* labels + log(1 + exp(-abs(logits)));
result = mean(result);
end
% sigmoid_cross_entropy对logits的导数,此处的logits是未经过sigmoid激活的
function result = delta_sigmoid_cross_entropy(logits, labels)
temp1 = max(logits, 0);
temp1(temp1>0) = 1;
temp2 = logits;
temp2(temp2>0) = -1;
temp2(temp2<0) = 1;
result = temp1 - labels + exp(-abs(logits))./(1+exp(-abs(logits))) .* temp2;
end
% 根据所给的结构建立网络
function nn = nnsetup(architecture)
nn.architecture = architecture;
nn.layers_count = numel(nn.architecture);
% t,beta1,beta2,epsilon,nn.layers{i}.w_m,nn.layers{i}.w_v,nn.layers{i}.b_m,nn.layers{i}.b_v是应用adam算法更新网络所需的变量
nn.t = 0;
nn.beta1 = 0.9;
nn.beta2 = 0.999;
nn.epsilon = 10^(-8);
% 假设结构为[100, 512, 784],则有3层,输入层100,两个隐藏层:100*512,512*784, 输出为最后一层的a值(激活值)
for i = 2 : nn.layers_count
nn.layers{i}.w = normrnd(0, 0.02, nn.architecture(i-1), nn.architecture(i));
nn.layers{i}.b = normrnd(0, 0.02, 1, nn.architecture(i));
nn.layers{i}.w_m = 0;
nn.layers{i}.w_v = 0;
nn.layers{i}.b_m = 0;
nn.layers{i}.b_v = 0;
end
end
% 前向传递
function nn = nnff(nn, x)
nn.layers{1}.a = x;
for i = 2 : nn.layers_count
input = nn.layers{i-1}.a;
w = nn.layers{i}.w;
b = nn.layers{i}.b;
nn.layers{i}.z = input*w + repmat(b, size(input, 1), 1);
if i ~= nn.layers_count
nn.layers{i}.a = relu(nn.layers{i}.z);
else
nn.layers{i}.a = sigmoid(nn.layers{i}.z);
end
end
end
% discriminator的bp,下面的bp涉及到对各个参数的求导
% 如果更改网络结构(激活函数等)则涉及到bp的更改,更改weights,biases的个数则不需要更改bp
% 为了更新w,b,就是要求最终的loss对w,b的偏导数,残差就是在求w,b偏导数的中间计算过程的结果
function nn = nnbp_d(nn, y_h, y)
% d表示残差,残差就是最终的loss对各层未激活值(z)的偏导,偏导数的计算需要采用链式求导法则-自己手动推出来
n = nn.layers_count;
% 最后一层的残差
nn.layers{n}.d = delta_sigmoid_cross_entropy(y_h, y);
for i = n-1:-1:2
d = nn.layers{i+1}.d;
w = nn.layers{i+1}.w;
z = nn.layers{i}.z;
% 每一层的残差是对每一层的未激活值求偏导数,所以是后一层的残差乘上w,再乘上对激活值对未激活值的偏导数
nn.layers{i}.d = d*w' .* delta_relu(z);
end
% 求出各层的残差之后,就可以根据残差求出最终loss对weights和biases的偏导数
for i = 2:n
d = nn.layers{i}.d;
a = nn.layers{i-1}.a;
% dw是对每层的weights进行偏导数的求解
nn.layers{i}.dw = a'*d / size(d, 1);
nn.layers{i}.db = mean(d, 1);
end
end
% generator的bp
function g_net = nnbp_g(g_net, d_net)
n = g_net.layers_count;
a = g_net.layers{n}.a;
% generator的loss是由label_fake得到的,(images_fake过discriminator得到label_fake)
% 对g进行bp的时候,可以将g和d看成是一个整体
% g最后一层的残差等于d第2层的残差乘上(a .* (a_o))
g_net.layers{n}.d = d_net.layers{2}.d * d_net.layers{2}.w' .* (a .* (1-a));
for i = n-1:-1:2
d = g_net.layers{i+1}.d;
w = g_net.layers{i+1}.w;
z = g_net.layers{i}.z;
% 每一层的残差是对每一层的未激活值求偏导数,所以是后一层的残差乘上w,再乘上对激活值对未激活值的偏导数
g_net.layers{i}.d = d*w' .* delta_relu(z);
end
% 求出各层的残差之后,就可以根据残差求出最终loss对weights和biases的偏导数
for i = 2:n
d = g_net.layers{i}.d;
a = g_net.layers{i-1}.a;
% dw是对每层的weights进行偏导数的求解
g_net.layers{i}.dw = a'*d / size(d, 1);
g_net.layers{i}.db = mean(d, 1);
end
end
% 应用梯度
% 使用adam算法更新变量,可以参考:
% https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer
function nn = nnapplygrade(nn, learning_rate)
n = nn.layers_count;
nn.t = nn.t+1;
beta1 = nn.beta1;
beta2 = nn.beta2;
lr = learning_rate * sqrt(1-nn.beta2^nn.t) / (1-nn.beta1^nn.t);
for i = 2:n
dw = nn.layers{i}.dw;
db = nn.layers{i}.db;
% 下面的6行代码是使用adam更新weights与biases
nn.layers{i}.w_m = beta1 * nn.layers{i}.w_m + (1-beta1) * dw;
nn.layers{i}.w_v = beta2 * nn.layers{i}.w_v + (1-beta2) * (dw.*dw);
nn.layers{i}.w = nn.layers{i}.w - lr * nn.layers{i}.w_m ./ (sqrt(nn.layers{i}.w_v) + nn.epsilon);
nn.layers{i}.b_m = beta1 * nn.layers{i}.b_m + (1-beta1) * db;
nn.layers{i}.b_v = beta2 * nn.layers{i}.b_v + (1-beta2) * (db.*db);
nn.layers{i}.b = nn.layers{i}.b - lr * nn.layers{i}.b_m ./ (sqrt(nn.layers{i}.b_v) + nn.epsilon);
end
end
% 保存图片,便于观察generator生成的images_fake
function save_images(images, count, path)
n = size(images, 1);
row = count(1);
col = count(2);
I = zeros(row*28, col*28);
for i = 1:row
for j = 1:col
r_s = (i-1)*28+1;
c_s = (j-1)*28+1;
index = (i-1)*col + j;
pic = reshape(images(index, :), 28, 28);
I(r_s:r_s+27, c_s:c_s+27) = pic;
end
end
imwrite(I, path);
end
结果
实例2,Mini-batch Gradient Descent
代码在github
:gan_mbgd.m
这里使用的网络结构与实例1的一样,只是换了一种优化器。使用Mini-batch Gradient Descent算法更新GAN网络,下面是部分代码。
% 应用梯度
function nn = nnapplygrade(nn, learning_rate)
n = nn.layers_count;
for i = 2:n
dw = nn.layers{i}.dw;
db = nn.layers{i}.db;
nn.layers{i}.w = nn.layers{i}.w - learning_rate * dw;
nn.layers{i}.b = nn.layers{i}.b - learning_rate * db;
end
end
结果: