RabbitMQ 入门到应用 ( 八 ) 常见面试题

9.常见面试题

以下内容均来自于网络上各位高手整理, 我只是一名搬运工
在此表示感谢, 并会不断整理补充

1、什么是消息队列:

1.0、什么是Message Queue

其主要目的是为了解决传统的消息传输上管理困难,效率不高的问题.

1.1、消息队列的优点:

(1)解耦:将系统按照不同的业务功能拆分出来,消息生产者只管把消息发布到 MQ 中而不用管谁来取,消息消费者只管从 MQ 中取消息而不管是谁发布的。消息生产者和消费者都不知道对方的存在;

(2)异步:主流程只需要完成业务的核心功能;对于业务非核心功能,将消息放入到消息队列之中进行异步处理,减少请求的等待,提高系统的总体性能;

(3)削峰/限流:将所有请求都写到消息队列中,消费服务器按照自身能够处理的请求数从队列中拿到请求,防止请求并发过高将系统搞崩溃;

1.2、消息队列的缺点:

(1)系统的可用性降低:系统引用的外部依赖越多,越容易挂掉,如果MQ 服务器挂掉,那么可能会导致整套系统崩溃。这时就要考虑如何保证消息队列的高可用了

(2)系统复杂度提高:加入消息队列之后,需要保证消息没有重复消费、如何处理消息丢失的情况、如何保证消息传递的有序性等问题;

(3)数据一致性问题:A 系统处理完了直接返回成功了,使用者都以为你这个请求就成功了;但是问题是,要是 BCD 三个系统那里,BD 两个系统写库成功了,结果 C 系统写库失败了,就会导致数据不一致了

1.3、Kafka、ActiveMQ、RabbitMQ、RocketMQ 消息队列的选型:

RabbitMQ 入门到应用 ( 八 ) 常见面试题_第1张图片

每种MQ没有绝对的好坏,主要依据使用场景,扬长避短,利用其优势,规避其劣势。

(1)中小型软件公司,技术实力较为一般,建议选RabbitMQ:一方面,erlang语言天生具备高并发的特性,而且管理界面用起来十分方便。代码是开源的,而且社区十分活跃,可以解决开发过程中遇到的bug,这点对于中小型公司来说十分重要。

不考虑 rocketmq 的原因是,rocketmq是阿里出品,如果阿里放弃维护rocketmq,中小型公司一般抽不出人来进行rocketmq的定制化开发,因此不推荐。
不考虑 kafka 的原因是:中小型软件公司不如互联网公司,数据量没那么大,选消息中间件应首选功能比较完备的,所以kafka排除
(2)大型软件公司:根据具体使用场景在rocketMq和kafka之间二选一。

一方面,大型软件公司,具备足够的资金搭建分布式环境,也具备足够大的数据量。针对rocketMQ,大型软件公司有能力对rocketMQ进行定制化开发。至于kafka,如果是大数据领域的实时计算、日志采集功能,肯定是首选kafka了。

2、MQ的应用场景

2.1、异步处理

场景说明:用户注册后,需要发注册邮件和注册短信。传统的做法有两种1.串行的方式;2.并行方式。

(1)串行方式:将注册信息写入数据库成功后,发送注册邮件,再发送注册短信。以上三个任务全部完成后,返回给客户端。
(2)并行方式:将注册信息写入数据库成功后,发送注册邮件的同时,发送注册短信。以上三个任务完成后,返回给客户端。与串行的差别是,并行的方式可以提高处理的时间。

假设三个业务节点每个使用50毫秒钟,不考虑网络等其他开销,则串行方式的时间是150毫秒,并行的时间可能是100毫秒。
因为CPU在单位时间内处理的请求数是一定的,假设CPU1秒内吞吐量是100次。则串行方式1秒内CPU可处理的请求量是7次(1000/150)。并行方式处理的请求量是10次(1000/100)。

小结:如以上案例描述,传统的方式系统的性能(并发量,吞吐量,响应时间)会有瓶颈。如何解决这个问题呢?

引入消息队列,将不是必须的业务逻辑,异步处理。改造后的架构如下:
按照以上约定,用户的响应时间相当于是注册信息写入数据库的时间,也就是50毫秒。注册邮件,发送短信写入消息队列后,直接返回,因此写入消息队列的速度很快,基本可以忽略,因此用户的响应时间可能是50毫秒。因此架构改变后,系统的吞吐量提高到每秒20 QPS。比串行提高了3倍,比并行提高了两倍。

2.2、应用解耦

场景说明:用户下单后,订单系统需要通知库存系统。传统的做法是,订单系统调用库存系统的接口。

传统模式的缺点:
1) 假如库存系统无法访问,则订单减库存将失败,从而导致订单失败;
2) 订单系统与库存系统耦合;

如何解决以上问题呢?引入应用消息队列后的方案,如下图:

订单系统:用户下单后,订单系统完成持久化处理,将消息写入消息队列,返回用户订单下单成功。
库存系统:订阅下单的消息,采用拉/推的方式,获取下单信息,库存系统根据下单信息,进行库存操作。
假如:在下单时库存系统不能正常使用。也不影响正常下单,因为下单后,订单系统写入消息队列就不再关心其他的后续操作了。实现订单系统与库存系统的应用解耦。

2.3、流量削锋

流量削锋也是消息队列中的常用场景,一般在秒杀或团抢活动中使用广泛。

应用场景:秒杀活动,一般会因为流量过大,导致流量暴增,应用挂掉。为解决这个问题,一般需要在应用前端加入消息队列。
可以控制活动的人数;
可以缓解短时间内高流量压垮应用;

用户的请求,服务器接收后,首先写入消息队列。假如消息队列长度超过最大数量,则直接抛弃用户请求或跳转到错误页面;
秒杀业务根据消息队列中的请求信息,再做后续处理。

2.4、日志处理

日志处理是指将消息队列用在日志处理中,比如Kafka的应用,解决大量日志传输的问题。架构简化如下:
日志采集客户端,负责日志数据采集,定时写受写入Kafka队列;
Kafka消息队列,负责日志数据的接收,存储和转发;
日志处理应用:订阅并消费kafka队列中的日志数据;

(1)Kafka:接收用户日志的消息队列。
(2)Logstash:做日志解析,统一成JSON输出给Elasticsearch。
(3)Elasticsearch:实时日志分析服务的核心技术,一个schemaless,实时的数据存储服务,通过index组织数据,兼具强大的搜索和统计功能。
(4)Kibana:基于Elasticsearch的数据可视化组件,超强的数据可视化能力是众多公司选择ELK stack的重要原因。

2.5、消息通讯

消息通讯是指,消息队列一般都内置了高效的通信机制,因此也可以用在纯的消息通讯。比如实现点对点消息队列,或者聊天室等。

点对点通讯:
客户端A和客户端B使用同一队列,进行消息通讯。

聊天室通讯:
客户端A,客户端B,客户端N订阅同一主题,进行消息发布和接收。实现类似聊天室效果。

3、RabbitMQ的构造:

RabbitMQ 入门到应用 ( 八 ) 常见面试题_第2张图片

RabbitMQ 是 AMQP 协议的一个开源实现,所以其内部实际上也是 AMQP 中的基本概念:

3.1、AMQP协议是什么?

AMQP(Advanced Message Queuing Protocol)高级消息队列协议

提到RabbitMQ,就不得不提AMQP协议。AMQP协议是具有现代特征的二进制协议。是一个提供统一消息服务的应用层标准高级消息队列协议,是应用层协议的一个开放标准,为面向消息的中间件设计。可以把它理解成一种公认的协议规范,就像http协议一样,只是这个AMQP协议针对的是消息队列。

AMQP中消息的路由过程和JMS存在一些差别。AMQP中增加了Exchange和Binging的角色。生产者把消息发布到Exchange上,消息最终到达队列并被消费者接收,而Binding决定交换器的消息应该发送到哪个队列。

3.2、AMQP协议的基本概念

(1)生产者Publisher:生产消息,就是投递消息的一方。消息一般包含两个部分:消息体(payload)和标签(Label)
(2)消费者Consumer:消费消息,也就是接收消息的一方。消费者连接到RabbitMQ服务器,并订阅到队列上。消费消息时只消费消息体,丢弃标签。
(3)Broker服务节点:表示消息队列服务器实体。一般情况下一个Broker可以看做一个RabbitMQ服务器。
(4)Queue:消息队列,用来存放消息。一个消息可投入一个或多个队列,多个消费者可以订阅同一队列,这时队列中的消息会被平摊(轮询)给多个消费者进行处理。
(5)Exchange:交换器,接受生产者发送的消息,根据路由键将消息路由到绑定的队列上。
(6)Routing Key: 路由关键字,用于指定这个消息的路由规则,需要与交换器类型和绑定键(Binding Key)联合使用才能最终生效。
(7)Binding:绑定,通过绑定将交换器和队列关联起来,一般会指定一个BindingKey,通过BindingKey,交换器就知道将消息路由给哪个队列了。
(8)Connection :网络连接,比如一个TCP连接,用于连接到具体broker
(9)Channel: 信道,AMQP 命令都是在信道中进行的,不管是发布消息、订阅队列还是接收消息,这些动作都是通过信道完成。因为建立和销毁 TCP 都是非常昂贵的开销,所以引入了信道的概念,以复用一条 TCP 连接,一个TCP连接可以用多个信道。客户端可以建立多个channel,每个channel表示一个会话任务。
(10)Message:消息,由消息头和消息体组成。消息体是不透明的,而消息头则由一系列的可选属性组成,这些属性包括routing-key(路由键)、priority(相对于其他消息的优先权)、delivery-mode(指出该消息可能需要持久性存储)等。
(11)Virtual host:虚拟主机,用于逻辑隔离,表示一批独立的交换器、消息队列和相关对象。一个Virtual host可以有若干个Exchange和Queue,同一个Virtual host不能有同名的Exchange或Queue。最重要的是,其拥有独立的权限系统,可以做到 vhost 范围的用户控制。当然,从 RabbitMQ 的全局角度,vhost 可以作为不同权限隔离的手段

4、 vhost 是什么? 起什么作用?

每一个rabbitmq服务器都能创建虚拟的消息服务器,我们称之为虚拟主机(virtual host)。简称vhost
特性:
每一个vhost本质上是一个小型的独立的rabbitmq服务器,拥有自己独立的完整的一套队列、绑定关系、交换器等。同一个服务器上的多个vhost是完全隔离的。队列及交换器等不互通。

所以一个broker可以开设多个vhost,用于不同用户的权限分离

如何创建vhost?
1)通过前台页面的admin中创建
2)使用rabbitmqctl add_vhost vhost名称 命令

如何删除vhost?
1)前台删除
2)rabbitmqctl delete_vhost vhost_name

5、Exchange交换器的类型:

Exchange分发消息时根据类型的不同分发策略有区别,目前共四种类型:direct、fanout、topic、headers

(1)direct:消息中的路由键(RoutingKey)如果和 Bingding 中的 bindingKey 完全匹配,交换器就将消息发到对应的队列中。是基于完全匹配、单播的模式。

(2)fanout:把所有发送到fanout交换器的消息路由到所有绑定该交换器的队列中,fanout 类型转发消息是最快的。

(3)topic:通过模式匹配的方式对消息进行路由,将路由键和某个模式进行匹配,此时队列需要绑定到一个模式上。

匹配规则:

① RoutingKey 和 BindingKey 为一个 点号 ‘.’ 分隔的字符串。 比如: java.xiaoka.show
② BindingKey可使用 * 和 # 用于做模糊匹配:*匹配一个单词,#匹配多个或者0个单词
(4)headers:不依赖于路由键进行匹配,是根据发送消息内容中的headers属性进行匹配,除此之外 headers 交换器和 direct 交换器完全一致,但性能差很多,目前几乎用不到了

6、生产接收消息的过程

6.1、生产者消息的过程:

(1)Producer 先连接到 Broker,建立连接 Connection,开启一个信道 channel
(2)Producer 声明一个交换器并设置好相关属性
(3)Producer 声明一个队列并设置好相关属性
(4)Producer 通过绑定键将交换器和队列绑定起来
(5)Producer 发送消息到 Broker,其中包含路由键、交换器等信息
(6)交换器根据接收到的路由键查找匹配的队列
(7)如果找到,将消息存入对应的队列,如果没有找到,会根据生产者的配置丢弃或者退回给生产者。
(8)关闭信道

6.2、消费者接收消息过程:

(1)Consumer先连接到 Broker,建立连接 Connection,开启一个信道 channel
(2)向 Broker 请求消费相应队列中消息,可能会设置响应的回调函数。
(3)等待 Broker 回应并投递相应队列中的消息,接收消息。
(4)消费者确认收到的消息,ack。
(5)RabbitMQ从队列中删除已经确定的消息。
(6)关闭信道

7、消息传输的模式有哪些?

1.简单模式

简单模式是最简单的消息模式,它包含一个生产者、一个消费者和一个队列。生产者向队列里发送消息,消费者从队列中获取消息并消费。

RabbitMQ 入门到应用 ( 八 ) 常见面试题_第3张图片

2.工作模式

工作模式是指向多个互相竞争的消费者发送消息的模式,它包含一个生产者、两个消费者和一个队列。两个消费者同时绑定到一个队列上去,当消费者获取消息处理耗时任务时,空闲的消费者从队列中获取并消费消息。

RabbitMQ 入门到应用 ( 八 ) 常见面试题_第4张图片

3.发布/订阅模式

发布/订阅模式是指同时向多个消费者消费消息的模式(类似广播的形式),它包含一个生产者、两个消费者、两个队列和一个交换机。两个消费者同时绑定到不同的队列上去,两个队列绑定到交换机上去,生产者通过发送消息到交换机,所有消费者接收并消费消息。

RabbitMQ 入门到应用 ( 八 ) 常见面试题_第5张图片

4.路由模式

路由模式是可以根据路由键选择性给多个消费者发送消息的模式,它包含一个生产者、两个消费者、两个队列和一个交换机。两个消费者同时绑定到不同的队列上去,两个队列通过绑定键绑定到交换机上去,生产者发送消息到交换机,交换机通过路由键转发到不同队列,队列绑定的消费者接收并消费消息(要求路由键和绑定键相同)

RabbitMQ 入门到应用 ( 八 ) 常见面试题_第6张图片

常用的交换器主要分为一下三种:
fanout:如果交换器收到消息,将会广播到所有绑定的队列上
direct:如果路由键完全匹配,消息就被投递到相应的队列
topic:可以使来自不同源头的消息能够到达同一个队列。 使用 topic 交换器时,可以使用通配符

5.通配符模式:

就是绑定键是某种泛泛的符号规则,如果传过来的消息路由键与绑定键匹配,就能传递到对应的消息队列上
特殊匹配符号
*:只能匹配一个单词;
#:可以匹配零个或多个单词。
模式示意图

RabbitMQ 入门到应用 ( 八 ) 常见面试题_第7张图片

8、消息分发策略有哪些?

1、轮询分发

RabbitMQ 分发消息默认采用的轮训分发,但是在某种场景下这种策略并不是很好,当有两个消费者在处理任务时,其中有个消费者 处理任务的速度非常快,而另外一个消费者处理速度却很慢,这个时候我们还是采用轮训分发就会导致这处理速度快的这个消费者很大一部分时间处于空闲状态。我们可以通过修改消息分发德默认机制,来达到优化目的;

2、不公平分发

通过设置参数 channel.basicQos(1);实现不公平分发策略使得能者多劳;

RabbitMQ 入门到应用 ( 八 ) 常见面试题_第8张图片

通过RabbitMq的Web管理页面,可以看到Channels的Prefetch count属性显示为1则表示不公平分发成功;

RabbitMQ 入门到应用 ( 八 ) 常见面试题_第9张图片

上面介绍了basicQos,如果我们将qos的值设为1,那么你想一想会出现什么情况呢?信道中只允许传输一条消息,那么当这条消息处理完后,队列会立马发送下一条消息,所以这个时候快的不断处理,慢的等待当前处理完再处理下一条。这样就实现了能者多劳。

3、预值分发

当消息被消费者接收后,但是没有确认,此时这里就存在一个未确认的消息缓冲区,用于存储非被确认的消息,该缓存区的大小是没有限制的。

预取值: 定义通道上允许的未确认消息的最大数量。一旦未确认消息数量达到配置的最大数量,RabbitMQ 将停止在通道上传递更多消息,除非至少有一个未处理的消息被确认;例如,假设在通道上有未确认的消息 5、6、7,8,并且通道的预取值计数设置为 4,此时 RabbitMQ 将不会在该通道上再传递任何消息,除非至少有一个未应答的消息被 ack;例如, tag=6 这个消息刚刚被确认 ACK,此时RabbitMQ 将会感知这个情况到并再发送一条消息。

如果消费者消费了大量的消息但是没有确认的话,就会导致消费者连接节点的内存消耗变大,所以找到合适的预取值是一个反复试验的过程,不同的负载该值取值也不同 100 到 300 范 围内的值通常可提供最佳的吞吐量。

其实预取值设置就是一个非公平分发策略,我们通过设置qos来设置消息缓冲区允许未确认消息的最大数量,当我们设置为1时,是最保守的,吞吐量也是最低的,而100到300这个范围通常是最佳的.

9、如何保证消息不被重复消费?

正常情况下,消费者在消费消息后,会给消息队列发送一个确认,消息队列接收后就知道消息已经被成功消费了,然后就从队列中删除该消息,也就不会将该消息再发送给其他消费者了。不同消息队列发出的确认消息形式不同,RabbitMQ是通过发送一个ACK确认消息。但是因为网络故障,消费者发出的确认并没有传到消息队列,导致消息队列不知道该消息已经被消费,然后就再次消息发送给了其他消费者,从而造成重复消费的情况。

重复消费问题的解决思路是:保证消息的唯一性,即使多次传输,也不让消息的多次消费带来影响,也就是保证消息等幂性;幂等性指一个操作执行任意多次所产生的影响均与一次执行的影响相同。具体解决方案如下:

(1)改造业务逻辑,使得在重复消费时也不影响最终的结果。例如对SQL语句: update t1 set money = 150 where id = 1 and money = 100; 做了个前置条件判断,即 money = 100 的情况下才会做更新,更通用的是做个 version 即版本号控制,对比消息中的版本号和数据库中的版本号。

(2)基于数据库的的唯一主键进行约束。消费完消息之后,到数据库中做一个 insert 操作,如果出现重复消费的情况,就会导致主键冲突,避免数据库出现脏数据。

(3)通过记录关键的key,当重复消息过来时,先判断下这个key是否已经被处理过了,如果没处理再进行下一步。

① 通过数据库:比如处理订单时,记录订单ID,在消费前,去数据库中进行查询该记录是否存在,如果存在则直接返回。
② 使用全局唯一ID,再配合第三组主键做消费记录,比如使用 redis 的 set 结构,生产者发送消息时给消息分配一个全局ID,在每次消费者开始消费前,先去redis中查询有没有消费记录,如果消费过则不进行处理,如果没消费过,则进行处理,消费完之后,就将这个ID以k-v的形式存入redis中(过期时间根据具体情况设置)。

10、如何保证消息不丢失,进行可靠性传输?

对于消息的可靠性传输,每种MQ都要从三个角度来分析:生产者丢数据、消息队列丢数据、消费者丢数据。以RabbitMQ为例:

10.1、生产者丢数据:

RabbitMQ提供事务机制(transaction)和确认机制(confirm)两种模式来确保生产者不丢消息。

(1)事务机制:

    发送消息前,开启事务(channel.txSelect()),然后发送消息,如果发送过程中出现什么异常,事务就会回滚(channel.txRollback()),如果发送成功则提交事务(channel.txCommit())

    该方式的缺点是生产者发送消息会同步阻塞等待发送结果是成功还是失败,导致生产者发送消息的吞吐量降下降。

// 开启事务
channel.txSelect
try {
    // 发送消息
} catch(Exception e){
    // 回滚事务
    channel.txRollback;
    //再次重试发送这条消息
    ....
}      
//提交事务
channel.txCommit;

(2)确认机制:

	生产环境常用的是confirm模式。生产者将信道 channel 设置成 confirm 模式,一旦 channel 进入 confirm 模式,所有在该信道上发布的消息都将会被指派一个唯一的ID,一旦消息被投递到所有匹配的队列之后,rabbitMQ就会发送一个确认给生产者(包含消息的唯一ID),这样生产者就知道消息已经正确到达目的队列了。如果rabbitMQ没能处理该消息,也会发送一个Nack消息给你,这时就可以进行重试操作。

​ Confirm模式最大的好处在于它是异步的,一旦发布消息,生产者就可以在等信道返回确认的同时继续发送下一条消息,当消息最终得到确认之后,生产者便可以通过回调方法来处理该确认消息。

处理Ack和Nack的代码如下所示:

channel.addConfirmListener(new ConfirmListener() {  
    @Override  
    public void handleNack(long deliveryTag, boolean multiple) throws IOException {  
        System.out.println("nack: deliveryTag = "+deliveryTag+" multiple: "+multiple);  
    }  
    @Override  
    public void handleAck(long deliveryTag, boolean multiple) throws IOException {  
        System.out.println("ack: deliveryTag = "+deliveryTag+" multiple: "+multiple);  
    }  
}); 

10.2、消息队列丢数据:

处理消息队列丢数据的情况,一般是开启持久化磁盘。持久化配置可以和生产者的 confirm 机制配合使用,在消息持久化磁盘后,再给生产者发送一个Ack信号。这样的话,如果消息持久化磁盘之前,即使 RabbitMQ 挂掉了,生产者也会因为收不到Ack信号而再次重发消息。

持久化设置如下(必须同时设置以下 2 个配置):

(1)创建queue的时候,将queue的持久化标志durable在设置为true,代表是一个持久的队列,这样就可以保证 rabbitmq 持久化 queue 的元数据,但是不会持久化queue里的数据;
(2)发送消息的时候将 deliveryMode 设置为 2,将消息设置为持久化的,此时 RabbitMQ 就会将消息持久化到磁盘上去。
这样设置以后,RabbitMQ 就算挂了,重启后也能恢复数据。在消息还没有持久化到硬盘时,可能服务已经死掉,这种情况可以通过引入镜像队列,但也不能保证消息百分百不丢失(整个集群都挂掉)

10.3、消费者丢数据:

消费者丢数据一般是因为采用了自动确认消息模式。该模式下,虽然消息还在处理中,但是消费中者会自动发送一个确认,通知 RabbitMQ 已经收到消息了,这时 RabbitMQ 就会立即将消息删除。

这种情况下,如果消费者出现异常而未能处理消息,那就会丢失该消息。解决方案就是采用手动确认消息,设置 autoAck = False,等到消息被真正消费之后,再手动发送一个确认信号,即使中途消息没处理完,但是服务器宕机了,那 RabbitMQ 就收不到发的ack,然后 RabbitMQ 就会将这条消息重新分配给其他的消费者去处理。

但是 RabbitMQ 并没有使用超时机制,RabbitMQ 仅通过与消费者的连接来确认是否需要重新发送消息,也就是说,只要连接不中断,RabbitMQ 会给消费者足够长的时间来处理消息。另外,采用手动确认消息的方式,我们也需要考虑一下几种特殊情况:

如果消费者接收到消息,在确认之前断开了连接或取消订阅,RabbitMQ 会认为消息没有被消费,然后重新分发给下一个订阅的消费者,所以存在消息重复消费的隐患

如果消费者接收到消息却没有确认消息,连接也未断开,则RabbitMQ认为该消费者繁忙,将不会给该消费者分发更多的消息

需要注意的点:

1、消息可靠性增强了,性能就下降了,因为写磁盘比写 RAM 慢的多,两者的吞吐量可能有 10 倍的差距。所以,是否要对消息进行持久化,需要综合考虑业务场景、性能需要,以及可能遇到的问题。若想达到单RabbitMQ服务器 10W 条/秒以上的消息吞吐量,则要么使用其他的方式来确保消息的可靠传输,要么使用非常快速的存储系统以支持全持久化,例如使用 SSD。或者仅对关键消息作持久化处理,且应该保证关键消息的量不会导致性能瓶颈。

2、当设置 autoAck = False 时,如果忘记手动 ack,那么将会导致大量任务都处于 Unacked 状态,造成队列堆积,直至消费者断开才会重新回到队列。解决方法是及时 ack,确保异常时 ack 或者拒绝消息。

3、启用消息拒绝或者发送 nack 后导致死循环的问题:如果在消息处理异常时,直接拒绝消息,消息会重新进入队列。这时候如果消息再次被处理时又被拒绝 。这样就会形成死循环。

11、如何保证消息的有序性?

11.1.

针对保证消息有序性的问题,解决方法就是保证生产者入队的顺序是有序的,出队后的顺序消费则交给消费者去保证。

(1)方法一:拆分queue,使得一个queue只对应一个消费者。由于MQ一般都能保证内部队列是先进先出的,所以把需要保持先后顺序的一组消息使用某种算法都分配到同一个消息队列中。然后只用一个消费者单线程去消费该队列,这样就能保证消费者是按照顺序进行消费的了。但是消费者的吞吐量会出现瓶颈。如果多个消费者同时消费一个队列,还是可能会出现顺序错乱的情况,这就相当于是多线程消费了

RabbitMQ 入门到应用 ( 八 ) 常见面试题_第10张图片

(2)方法二:对于多线程的消费同一个队列的情况,可以使用重试机制:比如有一个微博业务场景的操作,发微博、写评论、删除微博,这三个异步操作。如果一个消费者先执行了写评论的操作,但是这时微博都还没发,写评论一定是失败的,等一段时间。等另一个消费者,先执行发微博的操作后,再执行,就可以成功。

11.2.如何保证消息的顺序消费

消息在投入到queue的时候是有顺序,如果只是单个消费者来处理对应的单个queue,是不会出现消息错乱的问题。但是在消费的时候有可能多个消费者消费同一个queue,由于各个消费者处理消息的时间不同,导致消息未能按照预期的顺序处理。其实根本的问题就是如何保证消息按照预期的顺序处理完成。

出现消费顺序错乱的情况

为了提高处理效率,一个queue存在多个consumer

RabbitMQ 入门到应用 ( 八 ) 常见面试题_第11张图片

一个queue只存在一个consumer,但是为了提高处理效率,consumer中使用了多线程进行处理

RabbitMQ 入门到应用 ( 八 ) 常见面试题_第12张图片

保证消息顺序性的方法

将原来的一个queue拆分成多个queue,每个queue都有一个自己的consumer。该种方案的核心是生产者在投递消息的时候根据业务数据关键值(例如订单ID哈希值对订单队列数取模)来将需要保证先后顺序的同一类数据(同一个订单的数据) 发送到同一个queue当中。

RabbitMQ 入门到应用 ( 八 ) 常见面试题_第13张图片

一个queue就一个consumer,在consumer中维护多个内存队列,根据业务数据关键值(例如订单ID哈希值对内存队列数取模)将消息加入到不同的内存队列中,然后多个真正负责处理消息的线程去各自对应的内存队列当中获取消息进行消费。

RabbitMQ 入门到应用 ( 八 ) 常见面试题_第14张图片

RabbitMQ保证消息顺序性总结:
核心思路就是根据业务数据关键值划分成多个消息集合,而且每个消息集合中的消息数据都是有序的,每个消息集合有自己独立的一个consumer。多个消息集合的存在保证了消息消费的效率,每个有序的消息集合对应单个的consumer也保证了消息消费时的有序性。

12、如何处理消息堆积情况?

场景题:几千万条数据在MQ里积压了七八个小时。

12.1、出现该问题的原因:

消息堆积往往是生产者的生产速度与消费者的消费速度不匹配导致的。有可能就是消费者消费能力弱,渐渐地消息就积压了,也有可能是因为消息消费失败反复复重试造成的,也有可能是消费端出了问题,导致不消费了或者消费极其慢。比如,消费端每次消费之后要写mysql,结果mysql挂了,消费端hang住了不动了,或者消费者本地依赖的一个东西挂了,导致消费者挂了。

所以如果是 bug 则处理 bug;如果是因为本身消费能力较弱,则优化消费逻辑,比如优化前是一条一条消息消费处理的,那么就可以批量处理进行优化。

12.2、临时扩容,快速处理积压的消息:

(1)先修复 consumer 的问题,确保其恢复消费速度,然后将现有的 consumer 都停掉;

(2)临时创建原先 N 倍数量的 queue ,然后写一个临时分发数据的消费者程序,将该程序部署上去消费队列中积压的数据,消费之后不做任何耗时处理,直接均匀轮询写入临时建立好的 N 倍数量的 queue 中;

(3)接着,临时征用 N 倍的机器来部署 consumer,每个 consumer 消费一个临时 queue 的数据

(4)等快速消费完积压数据之后,恢复原先部署架构 ,重新用原先的 consumer 机器消费消息。

这种做法相当于临时将 queue 资源和 consumer 资源扩大 N 倍,以正常 N 倍速度消费。

12.3、恢复队列中丢失的数据:

如果使用的是 rabbitMQ,并且设置了过期时间,消息在 queue 里积压超过一定的时间会被 rabbitmq 清理掉,导致数据丢失。这种情况下,实际上队列中没有什么消息挤压,而是丢了大量的消息。所以就不能说增加 consumer 消费积压的数据了,这种情况可以采取 “批量重导” 的方案来进行解决。在流量低峰期,写一个程序,手动去查询丢失的那部分数据,然后将消息重新发送到mq里面,把丢失的数据重新补回来。

12.4、MQ长时间未处理导致MQ写满的情况如何处理:

如果消息积压在MQ里,并且长时间都没处理掉,导致MQ都快写满了,这种情况肯定是临时扩容方案执行太慢,这种时候只好采用 “丢弃+批量重导” 的方式来解决了。首先,临时写个程序,连接到mq里面消费数据,消费一个丢弃一个,快速消费掉积压的消息,降低MQ的压力,然后在流量低峰期时去手动查询重导丢失的这部分数据。

13、如何保证消息队列的高可用?

RabbitMQ 是基于主从(非分布式)做高可用性的,RabbitMQ 有三种模式:单机模式、普通集群模式、镜像集群模式

13.1、单机模式:一般没人生产用单机模式

13.2、普通集群模式:

​ 普通集群模式用于提高系统的吞吐量,通过添加节点来线性扩展消息队列的吞吐量。也就是在多台机器上启动多个 RabbitMQ 实例,而队列 queue 的消息只会存放在其中一个 RabbitMQ 实例上,但是每个实例都同步 queue 的元数据(元数据是 queue 的一些配置信息,通过元数据,可以找到 queue 所在实例)。消费的时候,如果连接到了另外的实例,那么该实例就会从数据实际所在的实例上的queue拉取消息过来,就是说让集群中多个节点来服务某个 queue 的读写操作

​ 但普通集群模式的缺点在于:无高可用性,queue所在的节点宕机了,其他实例就无法从那个实例拉取数据;RabbitMQ 内部也会产生大量的数据传输。

RabbitMQ 入门到应用 ( 八 ) 常见面试题_第15张图片

13.3、镜像队列集群模式:

​ 镜像队列集群是RabbitMQ 真正的高可用模式,集群中一般会包含一个主节点master和若干个从节点slave,如果master由于某种原因失效,那么按照slave加入的时间排序,"资历最老"的slave会被提升为新的master。

​ 镜像队列下,所有的消息只会向master发送,再由master将命令的执行结果广播给slave,所以master与slave节点的状态是相同的。比如,每次写消息到 queue 时,master会自动将消息同步到各个slave实例的queue;如果消费者与slave建立连接并进行订阅消费,其实质上也是从master上获取消息,只不过看似是从slave上消费而已,比如消费者与slave建立了TCP连接并执行Basic.Get的操作,那么也是由slave将Basic.Get请求发往master,再由master准备好数据返回给slave,最后由slave投递给消费者。

从上面可以看出,队列的元数据和消息会存在于多个实例上,也就是说每个 RabbitMQ 节点都有这个 queue 的完整镜像,任何一个机器宕机了,其它机器节点还包含了这个 queue 的完整数据,其他消费者都可以到其它节点上去消费数据。

(1)缺点:

① 性能开销大,消息需要同步到所有机器上,导致网络带宽压力和消耗很重

② 非分布式,没有扩展性,如果 queue 的数据量大到这个机器上的容量无法容纳了,此时该方案就会出现问题了

(2)如何开启镜像集群模式呢?

​ 在RabbitMQ 的管理控制台Admin页面下,新增一个镜像集群模式的策略,指定的时候是可以要求数据同步到所有节点的,也可以要求同步到指定数量的节点,再次创建 queue 的时候,应用这个策略,就会自动将数据同步到其他的节点上去了。

RabbitMQ 入门到应用 ( 八 ) 常见面试题_第16张图片

—14、其他:

(1)交换器无法根据自身类型和路由键找到符合条件队列时,有哪些处理方式:设置mandatory = true,代表返回消息给生产者;设置mandatory = false,代表直接丢弃

(2)消费者得到消息队列中的数据的方式:push 和 pull

(3)消息基于什么传输:由于 TCP 连接的创建和销毁开销较大,且并发数受系统资源限制,会造成性能瓶颈。所以RabbitMQ 使用信道 channel 的方式来传输数据,信道是建立在真实的 TCP 连接内的虚拟连接,且每条 TCP 连接上的信道数量没有限制。

(4)死信队列DLX:

​ DLX也是一个正常的Exchange,和一般的Exchange没有任何区别。能在任何的队列上被指定,实际上就是设置某个队列的属性。当这个队列出现死信(dead message,就是没有任何消费者消费)的时候,RabbitMQ就会自动将这条消息重新发布到Exchange上去,进而被路由到另一个队列。可以监听这个队列中的消息作相应的处理。消息变为死信的几种情况:

消息被拒绝(basic.reject/basic.nack)同时 requeue=false(不重回队列)
TTL 过期
队列达到最大长度,无法再添加

(5)延迟队列:存储对应的延迟消息,当消息被发送以后,并不想让消费者立刻拿到消息,而是等待特定时间后,消费者才能拿到这个消息进行消费。在 RabbitMQ 中并不存在延迟队列,但我们可以通过设置消息的过期时间和死信队列来实现延迟队列,消费者监听死信交换器绑定的队列,而不要监听消息发送的队列。

(6)优先级队列:优先级高的队列会先被消费,可以通过 x-max-priority 参数来实现。但是当消费速度大于生产速度且 Broker 没有堆积的情况下,优先级显得没有意义。

(7)RabbitMQ 要求集群中至少有一个磁盘节点,其他节点可以是内存节点,当节点加入或离开集群时,必须要将该变更通知到至少一个磁盘节点。如果只有一个磁盘节点,刚好又是该节点崩溃了,那么集群可以继续路由消息,但不能创建队列、创建交换器、创建绑定、添加用户、更改权限、添加或删除集群节点。也就是说集群中的唯一磁盘节点崩溃的话,集群仍然可以运行,但直到该节点恢复前,无法更改任何东西。

15、说说你对rabbitmq持久化机制的理解

RabbitMQ 的消息默认存放在内存上面,如果不特别声明设置,消息不会持久化保存到硬盘上面的,如果节点重启或者意外crash掉,消息就会丢失。所以就要对消息进行持久化处理。

rabbitmq的持久化分为队列持久化、消息持久化和交换器持久化。

1)队列的持久化是在定义队列时的durable参数来决定的,当durable为true时,才代表队列会持久化。

Connection connection = connectionFactory.newConnection();
Channel channel = connection.createChannel();
//第二个餐胡设置为true,代表队列持久化
channel.queueDeclare("queue.persistent.name", true, false, false, null);

如果要在重启后保持消息的持久化必须设置消息是持久化的标识。

//通过传入MessageProperties.PERSISTENT_PLAIN就可以实现消息持久化
channel.basicPublish("exchange.persistent", "persistent", MessageProperties.PERSISTENT_TEXT_PLAIN, "persistent_test_message".getBytes());

上面阐述了队列的持久化和消息的持久化,如果不设置exchange的持久化对消息的可靠性来说没有什么影响,**但是同样如果exchange不设置持久化,那么当broker服务重启之后,exchange将不复存在,那么既而发送方rabbitmq producer就无法正常发送消息。**这里建议,同样设置exchange的持久化。exchange的持久化设置也特别简单.

//durable为true则开启持久化
Exchange.DeclareOk exchangeDeclare(String exchange,String type,boolean durable)throws IOException

所以一般三个持久化设置都要进行.

16、可以对所有消息都持久化吗?

不可以
持久化的操作是将数据写入磁盘中,效率上肯定比写入内存中要慢很多倍.而我们一般用mq会处理很多业务消息,若是所有消息都持久化,压力无疑是巨大的.所以持久化策略需要综合考虑,以及可能遇到的问题和解决方案,或者我们可以让一些必要数据持久化.

17、说说你对rabbitmq应答机制的理解

一、消息应答机制
消费者完成一个任务可能需要一段时间,如果其中一个消费者处理一个长的任务并仅只完成了部分突然它挂掉,由于RabbitMQ 一旦向消费者传递了一条消息,便立即将该消息标记为删除。在这种情况下,突然有个消费者挂掉了,我们将丢失正在处理的消息,以及后续发送给该消费者的消息也无法接收到。

为了保证消息在发送过程中不丢失,rabbitmq 引入消息应答机制。

消费者在接收到消息并且处理该消息之后,告诉 rabbitmq 它已经处理了,rabbitmq 可以把该消息删除掉了。

二、自动应答
消息发送后立即被认为已经传送成功,这种模式需要在高吞吐量和数据传输安全性方面做权衡,因为这种模式如果消息在接收到之前,消费者出现连接或者 channel 关闭,那么消息就丢失了,当然另一方面这种模式消费者可以传递过载的消息,没有对传递的消息数量进行限制,当然这样有可能使得消费者由于接收太多还来不及处理的消息,导致这些消息的积压,最终使得内存耗尽,最终这些消费者线程被操作系统杀死,所以这种模式仅适用在消费者可以高效并以某种速率能够处理这些消息的情况下使用。

三、手动消息应答的方法

//用于肯定确认,RabbitMQ 已知道该消息并且成功的处理消息,可以将其丢弃了
channel.basicAck();

//用于否定确认
channel.basicNack();

//用于否定确认,不处理该消息了直接拒绝,可以将其丢弃了
channel.basicReject();

如果消费者由于某些原因失去连接(其通道已关闭,连接已关闭或 TCP 连接丢失),导致消息未发送 ACK 确认,RabbitMQ 将了解到消息未完全处理,并将对其重新排队。如果此时其他消费者可以处理,它将很快将其重新分发给另一个消费者。这样,即使某个消费者偶尔死亡,也可以确保不会丢失任何消息。

18、说一下Rabbitmq事务机制

1、概述
在使用RabbitMQ的时候,我们可以通过消息持久化操作来解决因为服务器的异常奔溃导致的消息丢失,除此之外我们还会遇到一个问题,当消息的发布者在将消息发送出去之后,消息到底有没有正确到达broker代理服务器呢?如果不进行特殊配置的话,默认情况下发布操作是不会返回任何信息给生产者的,也就是默认情况下我们的生产者是不知道消息有没有正确到达broker的,如果在消息到达broker之前已经丢失的话,持久化操作也解决不了这个问题,因为消息根本就没到达代理服务器,你怎么进行持久化,那么这个问题该怎么解决呢?

RabbitMQ为我们提供了两种方式:

通过AMQP事务机制实现,这也是AMQP协议层面提供的解决方案;
通过将channel设置成confirm模式来实现;
2、事务机制
这里首先探讨下RabbitMQ事务机制。

RabbitMQ中与事务机制有关的方法有三个:txSelect(), txCommit()以及txRollback(), txSelect用于将当前channel设置成transaction模式,txCommit用于提交事务,txRollback用于回滚事务,在通过txSelect开启事务之后,我们便可以发布消息给broker代理服务器了,如果txCommit提交成功了,则消息一定到达了broker了,如果在txCommit执行之前broker异常崩溃或者由于其他原因抛出异常,这个时候我们便可以捕获异常通过txRollback回滚事务了。

public class P1 {
private static final String QUEUE_NAME = "test_tx";
public static void main(String[] args) throws IOException, TimeoutException {
    Connection connection = ConnectionUtils.getConnection();
    Channel channel = connection.createChannel();

    channel.queueDeclare(QUEUE_NAME,false,false,true,null);
    SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd 'at' HH:mm:ss z");
    Date date = new Date(System.currentTimeMillis());
    String message = simpleDateFormat.format(date);

    try {
        channel.txSelect();//开始事务
        channel.basicPublish("",QUEUE_NAME,null,message.getBytes());
        channel.txCommit();//提交事务
    }catch (Exception e){
        channel.txRollback();//回滚事务
        System.out.println("send message txRollback");
    }
    channel.close();
    connection.close();
  }
}

19、谈谈你对死信队列的理解

概念
当queue消息队列中的消息由于一些原因没办法被消费,如果这些消息一直没办法被处理,就会从这个正常的消息队列转移到死信消息队列中。

应用场景:当用户下单之后,如果一直不支付,那么用户下单的这条消息就会被存放到死信队列中去。

死信的来源
1.当queue消息队列满的时候,再进来的消息就会被放到死信队列中去。

​ 2.在消息应答的时候,如果消费者一直没有告诉RabbitMQ有没有成功处理消息,那么RabbitMQ消息队列就不清楚自己到底要不要删除这条消息,这个时候消息队列中的消息一直没办法处理,这样这条消息也会被放到死信队列中去。

​ 3.消息TTL过期,什么意思?TTL的全拼是Time To Live意思是指存活时间,就是消息队列中存放的消息一般都是有一定时间的,超过了这个时间,这条消息就会被放到死信队列中去。

如何去实现死信队列?
生产者:
发送消息.

普通消费者:
1)在用Map声明普通队列参数的时候,可以先设置死信队列的路由key和交换机,让普通该队列处理不来的消息转到对应的死信队列上.
2)然后声明普通队列,普通交换机,死信队列,死信交换机.
3)之后消费普通队列消息

public class Consumer01 {
    //普通交换机的名称
    public static final String NORMAL_EXCHANGE="normal_exchange";
    //死信交换机的名称
    public static final String DEAD_EXCHANGE="dead_exchange";
    //普通队列的名称
    public static final String NORMAL_QUEUE="normal_queue";
    //死信队列的名称
    public static final String DEAD_QUEUE="dead_queue";

    public static void main(String[] args) throws IOException, TimeoutException {
        Channel channel = RabbitMQUtil.getChannel();

        //声明死信和普通交换机类型为direct类型
        channel.exchangeDeclare(NORMAL_EXCHANGE, BuiltinExchangeType.DIRECT);
        channel.exchangeDeclare(DEAD_EXCHANGE,BuiltinExchangeType.DIRECT);

        //声明普通队列
        Map<String,Object> arguments=new HashMap<>();
        arguments.put("x-dead-letter-exchange",DEAD_EXCHANGE);
        arguments.put("x-dead-letter-routing-key","lisi");
        channel.queueDeclare(NORMAL_QUEUE,false,false,false,arguments);

        //声明死信队列
        channel.queueDeclare(DEAD_QUEUE,false,false,false,null);

        //绑定普通的交换机与普通的队列
        channel.queueBind(NORMAL_QUEUE,NORMAL_EXCHANGE,"zhangsan");

        //绑定死信的交换机与死信的队列
        channel.queueBind(DEAD_QUEUE,DEAD_EXCHANGE,"lisi");

        //如果能成功接收到消息会调用的回调函数
        DeliverCallback deliverCallback=(consumerTag, message)->{
            System.out.println("Consumer01接收者接收到的消息:"+new String(message.getBody()));
        };

        //如果取消从消息队列中获取消息时会调用的回调函数
        CancelCallback cancelCallback= consumerTag->{
            System.out.println("消息消费被中断");
        };

        channel.basicConsume(NORMAL_QUEUE,true,deliverCallback,cancelCallback);
    }
}


死信消费者:
1)消费死信队列即可,消费过程和普通队列一样.

20、说一下消息确认机制和返回机制,有什么区别?

为了保证 RabbitMQ 中消息的可靠性投递,以及消息在发生特定异常时的补偿策略,RabbitMQ诞生了消息确认和返回机制.

消息确认机制(也叫应答机制)

消息确认机制,是保障消息与 RabbitMQ消息之间可靠传输消息一种保障机制
其主要内容就是用来监听RabbitMQ消息队列收到消息之后返回给生产端的ack确认消息
消息确认机制描述了一种消息是否已经被发送到 RabbitMQ消息队列中以及 RabbitMQ消息队列是否以及接收到生产端发送的消息。

消息确认机制的作用

监听生产者的消息是否已经发送到了 RabbitMQ消息队列中;
如果消息没有被发送到 RabbitMQ消息队列中,则消息确认机制不会给生产端返回任何确认应答,也就是没有发送成功
相反,如果消息被成功发送到了 RabbitMQ消息队列中,则消息确认机制会给生产端返回一个确认应答,
以通知生产者,消息已经发送到了 RabbitMQ消息队列

消息返回机制

描述不可达的消息与生产者之间的一种保障策略
其主要是用来监听,RabbitMQ消息队列中是否存在不可达的消息,并根据监听结果返回给生产端的一种监听机制
消息返回机制描述了一种 RabbitMQ消息队列中的不可达消息与生产端的关系

什么是不可达的消息
消息在被成功发送到RabbitMQ消息队列中之后,如果消息在经过当前配置的 exchangeName 或 routingKey 没有找到指定的交换机,或没有匹配到对应的消息队列,
那么这个消息就被称为不可达的消息,如果此时配置了消息返回机制,那么此时RabbitMQ消息队列会返回给生产者一个信号,信号中包括消息不可达的原因,以及消息本身的内容。

消息确认机制的作用
监听生产端发动到RabbitMQ消息队列中的消息是否可达
如果消息不可达,则返回一个信号通知生产端,相反,如果消息可达,则不会返回任何信号

channel.addReturnListener(new ReturnListener() {
    @Override
    public void handleReturn(int replyCode, String replyText, String exchange, String routingKey, AMQP.BasicProperties properties, byte[] body) throws IOException {
        System.out.println("return relyCode: " + replyCode);    // 状态码
        System.out.println("return replyText: " + replyText);   // 结果信息
        System.out.println("return exchange: " + exchange);
        System.out.println("return routingKey: " + routingKey);
        System.out.println("return properties: " + properties);
        System.out.println("return body: " + new String(body));
   }
   
 });

21、SpringBoot如何整合Rabbitmq

这种低级的题目在工作了几年的程序员估计闻不到,但是想我们这种刚出来的小白估计会问到

  1. 导入spring-boot-starter-amqp的包
  2. 编写config配置类,配置相关交换机,队列,绑定键
  3. 利用@RabbitListener(要绑定的队列)+ @RabbitHandler 比如前一个注解标注在类上,后一个注解标注在方法上,用来监听某一个队列后,一旦队列有消息就做出相应操作
  4. 注入RabbitmqTemplate组件,然后利用相应的api进行发送消息,比如convertAndSend()方法
  5. 在处理订单超时这种情况便是如上方案: 先配置好队列的过期时间,一旦生成订单的消息在消息队列里没有被消费,那么这个时候就会被放入到死信队列里面,这个时候,我们就可以监听这个死信队列,一旦死信队列里面产生了消息,就执行dao的方法将相应的订单消息删除.
  6. 其次,如果你想保证消息的可靠性传输,可以设置应答机制和返回机制,利用rabbtemplate里的setConfirmCallback和setReturnCallback方法,前者是在消息成功到达之后会返回一个回调,后者是消息没有成功到达会返回一个回调,最后利用@PostConstruct让这两个机制发生在容器初始化的时候被调用就可以了.

你可能感兴趣的:(RabbitMQ,微服务,面试题,java-rabbitmq,rabbitmq,java)