python 判断为空nan、 null,Python Pandas:选择其列值为null / None / nan的行

How do I select those rows of a DataFrame whose value in a column is none?

I've coded these to np.nan and can't match against this type.

In [1]: import numpy as np

In [2]: import pandas as pd

In [3]: df = pd.DataFrame([[1, 2, 3], [3, 4, None]])

In [4]: df

Out[4]:

0 1 2

0 1 2 3.0

1 3 4 NaN

In [5]: df = df.fillna(np.nan)

In [6]: df

Out[6]:

0 1 2

0 1 2 3.0

1 3 4 NaN

In [7]: df.iloc[1][2]

Out[7]: nan

In [8]: df.iloc[1][2] == np.nan

Out[8]: False

In [9]: df[df[2] == None]

Out[9]:

Empty DataFrame

Columns: [0, 1, 2]

Index: []

解决方案

you can use .isna() method:

In [48]: df[df[2].isna()]

Out[48]:

0 1 2

1 3 4 NaN

你可能感兴趣的:(python,判断为空nan,null)