- 数据标注质量对AI模型质量的影响分析
自由鬼
行业发展IT应用探讨人工智能机器学习深度学习AI
上、数据标注质量与AI模型的质量关系数据标注是AI最基础的工作,数据标注的质量决定了AI质量,影响数据标注质量的是数据标注的规则。1、数据标注是AI最基础的工作:数据标注是构建高质量AI模型的基石:数据标注尤其是在监督学习范式下,是AI领域最基础、最关键的工作之一。没有高质量的标注数据,就如同建造高楼大厦没有坚实的地基,AI模型就无法有效地学习和训练,最终的AI质量也就无从谈起。训练数据是AI模型
- 【JVM】性能监控与调优概述篇
白晨并不是很能熬夜
JVMjvm后端面试java经验分享求职招聘
大家好,我是白晨,一个不是很能熬夜,但是也想日更的人✈。如果喜欢这篇文章,点个赞,关注一下白晨吧!你的支持就是我最大的动力!文章目录JVM性能监控与调优概述篇背景说明生产环境中的问题为什么要调优不同阶段的考虑调优概述监控的依据调优的大方向性能优化的步骤第一步(发现问题):性能监控第二步(排查问题):性能分析第三步(解决问题):性能调优性能评价/测试指标停顿时间(或响应时间)吞吐量并发数内存站用相互
- 信息检索系统评估指标的层级分析:从单点精确度到整体性能度量
人工智能深度学习llm检索系统
在构建搜索引擎系统时,有效的评估机制是保证系统质量的关键环节。当用户输入查询词如"machinelearningtutorialspython",系统返回结果列表后,如何客观评估这些结果的相关性和有效性?这正是信息检索评估指标的核心价值所在。分析用户与搜索引擎的交互模式,我们可以观察到以下行为特征:用户主要关注结果列表的前几项对顶部结果的关注度显著高于底部结果用户基于多次搜索体验形成对搜索系统整体
- 基于大模型的单纯性孔源性视网膜脱离预测及治疗方案研究报告
LCG元
围术期危险因子预测模型研究人工智能
目录一、引言1.1研究背景与目的1.2国内外研究现状1.3研究方法与创新点二、单纯性孔源性视网膜脱离概述2.1发病机制2.2高危因素2.3临床表现与诊断方法三、大模型在术前预测中的应用3.1模型选择与数据收集3.2术前风险预测指标3.3预测结果分析与验证四、基于预测结果的手术方案制定4.1手术原则与目标4.2不同预测结果下的手术方式选择4.3手术案例分析五、麻醉方案的确定5.1麻醉方式的选择依据5
- 哨兵2号遥感影像解析全流程:步骤、算法与AI应用详解
zhz5214
AIGIS人工智能遥感aisentinel智能体
遥感影像解析是农业监测、环境评估等领域的重要技术手段。哨兵2号(Sentinel-2)凭借其高分辨率多光谱数据,成为遥感分析的热门数据源。本文将系统梳理哨兵2号影像解析的核心步骤、适用算法与软件工具,并探讨AI技术在该领域的创新应用。一、哨兵2号影像解析核心步骤1.数据获取与预处理数据下载哨兵2号数据可通过官方平台[CopernicusOpenAccessHub](https://scihub.c
- 大数据学习(67)- Flume、Sqoop、Kafka、DataX对比
viperrrrrrr
大数据学习flumekafkasqoopdatax
大数据学习系列专栏:哲学语录:用力所能及,改变世界。如果觉得博主的文章还不错的话,请点赞+收藏⭐️+留言支持一下博主哦工具主要作用数据流向实时性数据源/目标应用场景Flume实时日志采集与传输从数据源到存储系统实时日志文件、网络流量等→HDFS、HBase、Kafka等日志收集、实时监控、实时分析Sqoop关系型数据库与Hadoop间数据同步关系型数据库→Hadoop生态系统(HDFS、Hive、
- 数据分析大数据面试题大杂烩01
爱学习的菜鸟罢了
大数据flink大数据面试hivehadoopkafka
互联网:通过埋点实时计算用户浏览频次用优惠券等措施吸引用户,通过历史信息用非智能学习的title方式构造用户画像(抖音,京东)电信,银行统计营收和针对用户的个人画像:处理大量非实时数据政府:健康码,扫码之后确诊,找出与确诊对象有关联的人订单订单表(除商品以外所有信息),商品详情表,通过搜集用户title进行定制化推荐点击流数据通过埋点进行用户点击行为分析FLINK一般用来做实时SPARK一般用来做
- 数学建模之数学模型-3:动态规划
^ω^宇博
数学模型数学建模动态规划算法
文章目录动态规划基本概念阶段状态决策策略状态转移方程指标函数最优指标函数动态规划的求解前向算法后向算法二者比较应用案例一种中文分词的动态规划模型摘要引言动态规划的分词模型问题的数学描述消除状态的后效性选择优化条件算法描述和计算实例算法的效率分析和评价结束语参考文献动态规划基本概念一个多阶段决策过程最优化问题的动态规划模型包括以下666个要素:以下是对动态规划中阶段、状态、决策、策略、状态转移方程、
- Python 爬虫实战:艺术品市场趋势分析与交易平台数据抓取
西攻城狮北
python爬虫开发语言
一、引言在当今数字化时代,艺术品市场正经历着前所未有的变革。随着互联网技术的飞速发展,越来越多的艺术品交易转移到了线上平台,这为我们提供了海量的数据资源。通过Python爬虫技术,我们可以抓取艺术品交易平台上的数据,进而分析艺术品市场的趋势,为投资者、收藏家以及艺术爱好者提供有价值的参考。本文将带领读者深入探索Python爬虫在艺术品市场的应用。从爬虫的基本原理到实际代码实现,再到数据的清洗、分析
- 海量数据查询加速:Presto、Trino、Apache Arrow
晴天彩虹雨
apache大数据hive数据仓库
1.引言在大数据分析场景下,查询速度往往是影响业务决策效率的关键因素。随着数据量的增长,传统的行存储数据库难以满足低延迟的查询需求,因此,基于列式存储、向量化计算等技术的查询引擎应运而生。本篇文章将深入探讨Presto、Trino、ApacheArrow三种主流的查询优化工具,剖析其核心机制,并通过案例分析展示它们在实际业务中的应用。2.Presto:分布式SQL查询引擎2.1Presto介绍Pr
- UNet 改进:添加Transformer注意力机制增强捕捉长距离依赖关系的能力
听风吹等浪起
AI改进系列transformer深度学习人工智能
目录1.Transformer注意力机制2.Unet改进3.代码1.Transformer注意力机制TransformerBlock是Transformer模型架构的基本组件,广泛应用于机器翻译、文本摘要和情感分析等自然语言处理任务。TransformerBlock是一个由两个子组件组成的构建块:多头注意力机制和前馈神经网络。这两个组件协同工作,处理和转换输入序列。多头注意力机制负责从输入序列中捕
- Spring框架快速入门手册
Uncoverlove
springmysqlmybatisjava后端
说明:本文试图将Spring框架的知识体系进行整合分析,并冠以自己的理解,为初学Spring框架的同学,提供一个快速入门手册。同时呢,也是为了总结一下工作学习中遇到的问题和经验,以免发生遗漏!文末将附上Spring的学习资料,以供大家学习~(申明一下:纯小白一枚,由于工作需要自学的Spring,或许某些理解会出现偏差,烦请各位斧正!不慎感激!!)快速入门推荐阅读书籍(欢迎补充):1、《JavaEE
- 【MyBatis-Plus 分页插件】深入分析和实战解析
Yan.love
mybatisjava后端
分页是Web应用开发中的高频需求,而在MyBatis的生态中,MyBatis-Plus分页插件PaginationInnerInterceptor和MyBatis的PageHelper是两种常见的实现方案。本文将通过工作机制、使用方法和细节剖析,带你循序渐进地掌握这两种方式,并为你的项目选择提供指导。一、什么是分页?分页的核心目标是减少数据传输量和前端渲染压力。通过限制每次查询的结果数量,分页能够
- 阿里巴巴发布 R1-Omni:首个基于 RLVR 的全模态大语言模型,用于情感识别
新加坡内哥谈技术
语言模型人工智能自然语言处理
每周跟踪AI热点新闻动向和震撼发展想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行!订阅:https://rengongzhineng.io/情感识别一直是AI领域的难题,尤其是视觉与音频信号的融合。单独依赖视觉或音频的模型,往往
- Podman 运行redis 报错
one one day
podmanredis数据库
Podman运行redis报错一、报错内容find:'.':Permissiondeniedchown:changingownershipof'.':Permissiondenied二、问题分析SELinux模式SELinux(Security-EnhancedLinux)是一种安全模块,旨在通过强制访问控制(MAC)来增强Linux系统的安全性。SELinux具有三种工作模式,每种模式提供不同的
- 安全中心建设关键技术之机器学习
sinfoyou
安全机器学习人工智能
1.1.1功能要求针对目前广为流行的网银、掌上银行撞库行为,需要围绕撞库防护建立针对性的发现、预警、拦截体系。在本课题在大量数据中自动分析获得规律,并利用规律对未知数据进行预测。通过机器学习重点解决目前无法在识别撞库攻击源IP地址的基础上,进一步识别出被撞库成功的账号。由于机器学习算法需要从数据中自动分析获得规律,所以必须要有历史数据。在针对撞库攻击行为分析的场景中,首先需要获取手机银行和网上银行
- Fastjson反序列化漏洞分析:挖掘思维与研究方法
恩师小迪
json安全网络
致谢首先,感谢我的小迪老师的指导与启发,让我有机会深入学习这个经典漏洞案例理解前辈们的安全研究思路。引言当分析一个广泛使用的库时,我们应该思考:为什么一个JSON解析库需要这么多特殊功能?大多数JSON库只做一件事:把JSON字符串转成对象,或者反过来。但Fastjson不同,它实现了更多功能。作为学习者,我们需要理解那些发现Fastjson漏洞的前辈们的研究方法。下面我们一起分析这个经典漏洞的发
- 基础知识《Redis解析》
Hum8le
redis数据库缓存安全web安全
Redis详细解析与介绍Redis(RemoteDictionaryServer)是一个开源的高性能键值对(Key-Value)数据库,支持多种数据结构(如字符串、哈希、列表、集合等),广泛应用于缓存、消息队列、实时数据分析等场景。核心特点:内存存储:数据主要存储在内存中,读写性能极高(10万+/秒QPS)。持久化支持:支持RDB(快照)和AOF(追加日志)两种持久化方式。多数据结构:支持字符串、
- 審單人員效率 PPP 模型
chenchihwen
网络sql数据库
审单人员效率PPP模型的目的审单人员效率PPP模型的主要目的是通过系统化的计算和分析,评估审单人员的工作效率,并为管理决策提供数据支持。具体包括以下几个方面:1.量化审单人员的工作效率目的:通过审单数量、工时、折算率等指标,量化审单人员的工作效率。实现方式:计算每个审单人员的审单量(vol_o)。根据标准工时表(t_dash_ppp_checker_std_v)折算审单数量(vol_c)。结合有效
- 使用 Excel 实现绩效看板的自动化
chenchihwen
自动化运维
引言在日常工作中,团队的绩效监控和管理是确保项目顺利进行的重要环节。然而,面临着以下问题:数据分散:系统中的数据难以汇总,缺乏一个宏观的团队执行情况视图。看板缺失:系统本身可能无法提供合适的Dashboard,导致数据分析困难。手动操作繁琐:数据采集、汇总和分析过程繁琐且耗时。本文将介绍如何利用免费的软件和工具(如Python、MySQL、Excel等)实现绩效看板的自动化。通过邮件自动推送和接收
- Go语言分布式ID生成策略优选:UUID、Snowflake、XID、ObjectID、Krand性能对比评测
zhuyasen
golang分布式
在高并发应用场景下,如订单系统、分布式数据库主键、消息队列等,分布式ID的生成至关重要。本文将基于Go语言,对多种分布式ID生成方案进行基准测试(Benchmark),并分析其性能及适用场景,帮助开发者选择最优方案。常见分布式ID生成方案在Go语言生态中,常见的分布式ID生成方案包括:XID(github.com/rs/xid):基于MongoDBObjectID改进的方案,时间排序、唯一性强、无
- Anthropic 的模型
调皮的芋头
深度学习神经网络机器学习人工智能
Anthropic的模型(特别是Claude系列)之所以在性能和推理能力上表现强劲,可以从技术设计、研究理念、训练方法以及应用优化等多个方面进行详细分析。以下是基于当前信息(截至2025年3月13日)和行业趋势的深入剖析:1.技术设计与安全导向Anthropic由前OpenAI研究员创立,核心理念是将安全性、可解释性和可控性融入模型设计。这种设计哲学直接影响了Claude模型的性能:Constit
- 【儿童自信的生物学机制】
调皮的芋头
机器学习数据库
在继续深入探讨儿童自信的生物学机制时,我们需要将视角拓展至神经递质系统、突触动态平衡以及跨脑区网络整合等更深层的神经发育规律。以下从三个新颖维度展开分析:一、神经递质系统的发育失衡现象儿童自信水平随年龄增长呈现U型曲线变化的现象,确实蕴含着复杂的生物进化机制与神经发育规律。从进化生物学视角来看,人类幼态持续特征决定了早期自信的生存价值:新生儿通过哭闹表达需求(平均每天1.5小时发声),这种原始自信
- DeepSeek R1有什么不同
新加坡内哥谈技术
人工智能深度学习机器人科技
每周跟踪AI热点新闻动向和震撼发展想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行!订阅:https://rengongzhineng.io/深度思考实验室(DeepSeek)最近发布了全新的推理模型R1,声称该模型不仅性能超越目
- MyBatis-Plus 分页查询接口返回值问题剖析
字节熊猫
mybatistomcatjavamybatis-plus
在使用MyBatis-Plus进行分页查询时,很多开发者会遇到一个常见的问题:当分页查询接口返回值定义为Page时,执行查询会抛出异常;而将返回值修改为IPage时,分页查询却能正常工作。本文将从MyBatis-Plus的分页机制入手,详细分析这一问题的根源,并提供相应的解决方案。一、问题现象描述在MyBatis-Plus中,我们通常会定义一个分页查询接口,如下:PageselectComment
- 深入剖析 BitBake 源代码:架构、模块与 Yocto 项目的协同关系
嵌入式Jerry
Yoctolinuxuic++架构嵌入式硬件
引言BitBake是Yocto项目的核心任务调度引擎,它通过对元数据的解析和任务依赖图的生成,为嵌入式Linux系统的构建提供了高效的支持。作为Yocto项目的执行核心,BitBake的代码设计逻辑清晰、功能模块划分明确。本文将结合实际代码,从BitBake的架构入手,分析其模块的功能与实现,并通过实例详细讲解BitBake如何与Yocto项目协同工作。1.BitBake源代码的整体架构1.1源代
- 大语言模型微调和大语言模型应用的区别?
AI Echoes
深度学习人工智能机器学习
1.基本概念微调(Fine-tuning)定义:微调是指在预训练大语言模型的基础上,通过在特定领域或任务的数据上进一步训练,从而使模型在该特定任务上表现更优。目的:适应具体的任务需求,比如法律文书写作、医疗问答、金融分析等,使得模型能更好地理解和生成符合领域要求的内容。过程:通常涉及准备领域特定的数据集、设计合适的损失函数、调整超参数(例如学习率、批量大小等),以及选择冻结或解冻部分参数来更新模型
- Java常用集合与映射的线程安全问题深度解析
扣得A艾
java安全开发语言
Java常用集合与映射的线程安全问题深度解析一、线程安全基础认知在并发编程环境下,当多个线程同时操作同一集合对象时,若未采取同步措施,可能导致以下典型问题:数据竞争:多个线程同时修改数据导致结果不可预测状态不一致:部分线程看到集合的中间状态内存可见性:线程本地缓存与主内存数据不同步死循环风险:特定操作引发无限循环(如JDK7的HashMap扩容)二、典型非线程安全集合问题分析1.ArrayList
- Gemma 3 发布:最强单 GPU/TPU 可运行模型,性能超 Llama-405B!
新加坡内哥谈技术
人工智能自然语言处理语言模型深度学习copilotllama
每周跟踪AI热点新闻动向和震撼发展想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行!订阅:https://rengongzhineng.io/GoogleDeepMind再次掀起AI界的狂潮,正式推出Gemma3——一款轻量级但性
- 大语言模型微调和大语言模型应用的区别?
AI Echoes
人工智能深度学习机器学习
大语言模型微调和大语言模型应用的区别?1.定义与目标微调(Fine-tuning)目标:调整预训练模型(如GPT、LLaMA、PaLM)的参数,使其适应特定任务或领域。核心:通过额外的训练(使用特定数据集)优化模型的性能,提升其在特定场景下的效果。例如:将通用模型微调为法律咨询、医疗诊断或金融分析的专业模型。应用(Application)目标:直接使用预训练或微调后的模型解决实际问题,无需修改模型
- 面向对象面向过程
3213213333332132
java
面向对象:把要完成的一件事,通过对象间的协作实现。
面向过程:把要完成的一件事,通过循序依次调用各个模块实现。
我把大象装进冰箱这件事为例,用面向对象和面向过程实现,都是用java代码完成。
1、面向对象
package bigDemo.ObjectOriented;
/**
* 大象类
*
* @Description
* @author FuJian
- Java Hotspot: Remove the Permanent Generation
bookjovi
HotSpot
openjdk上关于hotspot将移除永久带的描述非常详细,http://openjdk.java.net/jeps/122
JEP 122: Remove the Permanent Generation
Author Jon Masamitsu
Organization Oracle
Created 2010/8/15
Updated 2011/
- 正则表达式向前查找向后查找,环绕或零宽断言
dcj3sjt126com
正则表达式
向前查找和向后查找
1. 向前查找:根据要匹配的字符序列后面存在一个特定的字符序列(肯定式向前查找)或不存在一个特定的序列(否定式向前查找)来决定是否匹配。.NET将向前查找称之为零宽度向前查找断言。
对于向前查找,出现在指定项之后的字符序列不会被正则表达式引擎返回。
2. 向后查找:一个要匹配的字符序列前面有或者没有指定的
- BaseDao
171815164
seda
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
public class BaseDao {
public Conn
- Ant标签详解--Java命令
g21121
Java命令
这一篇主要介绍与java相关标签的使用 终于开始重头戏了,Java部分是我们关注的重点也是项目中用处最多的部分。
1
- [简单]代码片段_电梯数字排列
53873039oycg
代码
今天看电梯数字排列是9 18 26这样呈倒N排列的,写了个类似的打印例子,如下:
import java.util.Arrays;
public class 电梯数字排列_S3_Test {
public static void main(S
- Hessian原理
云端月影
hessian原理
Hessian 原理分析
一. 远程通讯协议的基本原理
网络通信需要做的就是将流从一台计算机传输到另外一台计算机,基于传输协议和网络 IO 来实现,其中传输协议比较出名的有 http 、 tcp 、 udp 等等, http 、 tcp 、 udp 都是在基于 Socket 概念上为某类应用场景而扩展出的传输协
- 区分Activity的四种加载模式----以及Intent的setFlags
aijuans
android
在多Activity开发中,有可能是自己应用之间的Activity跳转,或者夹带其他应用的可复用Activity。可能会希望跳转到原来某个Activity实例,而不是产生大量重复的Activity。
这需要为Activity配置特定的加载模式,而不是使用默认的加载模式。 加载模式分类及在哪里配置
Activity有四种加载模式:
standard
singleTop
- hibernate几个核心API及其查询分析
antonyup_2006
html.netHibernatexml配置管理
(一) org.hibernate.cfg.Configuration类
读取配置文件并创建唯一的SessionFactory对象.(一般,程序初始化hibernate时创建.)
Configuration co
- PL/SQL的流程控制
百合不是茶
oraclePL/SQL编程循环控制
PL/SQL也是一门高级语言,所以流程控制是必须要有的,oracle数据库的pl/sql比sqlserver数据库要难,很多pl/sql中有的sqlserver里面没有
流程控制;
分支语句 if 条件 then 结果 else 结果 end if ;
条件语句 case when 条件 then 结果;
循环语句 loop
- 强大的Mockito测试框架
bijian1013
mockito单元测试
一.自动生成Mock类 在需要Mock的属性上标记@Mock注解,然后@RunWith中配置Mockito的TestRunner或者在setUp()方法中显示调用MockitoAnnotations.initMocks(this);生成Mock类即可。二.自动注入Mock类到被测试类 &nbs
- 精通Oracle10编程SQL(11)开发子程序
bijian1013
oracle数据库plsql
/*
*开发子程序
*/
--子程序目是指被命名的PL/SQL块,这种块可以带有参数,可以在不同应用程序中多次调用
--PL/SQL有两种类型的子程序:过程和函数
--开发过程
--建立过程:不带任何参数
CREATE OR REPLACE PROCEDURE out_time
IS
BEGIN
DBMS_OUTPUT.put_line(systimestamp);
E
- 【EhCache一】EhCache版Hello World
bit1129
Hello world
本篇是EhCache系列的第一篇,总体介绍使用EhCache缓存进行CRUD的API的基本使用,更细节的内容包括EhCache源代码和设计、实现原理在接下来的文章中进行介绍
环境准备
1.新建Maven项目
2.添加EhCache的Maven依赖
<dependency>
<groupId>ne
- 学习EJB3基础知识笔记
白糖_
beanHibernatejbosswebserviceejb
最近项目进入系统测试阶段,全赖袁大虾领导有力,保持一周零bug记录,这也让自己腾出不少时间补充知识。花了两天时间把“传智播客EJB3.0”看完了,EJB基本的知识也有些了解,在这记录下EJB的部分知识,以供自己以后复习使用。
EJB是sun的服务器端组件模型,最大的用处是部署分布式应用程序。EJB (Enterprise JavaBean)是J2EE的一部分,定义了一个用于开发基
- angular.bootstrap
boyitech
AngularJSAngularJS APIangular中文api
angular.bootstrap
描述:
手动初始化angular。
这个函数会自动检测创建的module有没有被加载多次,如果有则会在浏览器的控制台打出警告日志,并且不会再次加载。这样可以避免在程序运行过程中许多奇怪的问题发生。
使用方法: angular .
- java-谷歌面试题-给定一个固定长度的数组,将递增整数序列写入这个数组。当写到数组尾部时,返回数组开始重新写,并覆盖先前写过的数
bylijinnan
java
public class SearchInShiftedArray {
/**
* 题目:给定一个固定长度的数组,将递增整数序列写入这个数组。当写到数组尾部时,返回数组开始重新写,并覆盖先前写过的数。
* 请在这个特殊数组中找出给定的整数。
* 解答:
* 其实就是“旋转数组”。旋转数组的最小元素见http://bylijinnan.iteye.com/bl
- 天使还是魔鬼?都是我们制造
ducklsl
生活教育情感
----------------------------剧透请原谅,有兴趣的朋友可以自己看看电影,互相讨论哦!!!
从厦门回来的动车上,无意中瞟到了书中推荐的几部关于儿童的电影。当然,这几部电影可能会另大家失望,并不是类似小鬼当家的电影,而是关于“坏小孩”的电影!
自己挑了两部先看了看,但是发现看完之后,心里久久不能平
- [机器智能与生物]研究生物智能的问题
comsci
生物
我想,人的神经网络和苍蝇的神经网络,并没有本质的区别...就是大规模拓扑系统和中小规模拓扑分析的区别....
但是,如果去研究活体人类的神经网络和脑系统,可能会受到一些法律和道德方面的限制,而且研究结果也不一定可靠,那么希望从事生物神经网络研究的朋友,不如把
- 获取Android Device的信息
dai_lm
android
String phoneInfo = "PRODUCT: " + android.os.Build.PRODUCT;
phoneInfo += ", CPU_ABI: " + android.os.Build.CPU_ABI;
phoneInfo += ", TAGS: " + android.os.Build.TAGS;
ph
- 最佳字符串匹配算法(Damerau-Levenshtein距离算法)的Java实现
datamachine
java算法字符串匹配
原文:http://www.javacodegeeks.com/2013/11/java-implementation-of-optimal-string-alignment.html------------------------------------------------------------------------------------------------------------
- 小学5年级英语单词背诵第一课
dcj3sjt126com
englishword
long 长的
show 给...看,出示
mouth 口,嘴
write 写
use 用,使用
take 拿,带来
hand 手
clever 聪明的
often 经常
wash 洗
slow 慢的
house 房子
water 水
clean 清洁的
supper 晚餐
out 在外
face 脸,
- macvim的使用实战
dcj3sjt126com
macvim
macvim用的是mac里面的vim, 只不过是一个GUI的APP, 相当于一个壳
1. 下载macvim
https://code.google.com/p/macvim/
2. 了解macvim
:h vim的使用帮助信息
:h macvim
- java二分法查找
蕃薯耀
java二分法查找二分法java二分法
java二分法查找
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月23日 11:40:03 星期二
http:/
- Spring Cache注解+Memcached
hanqunfeng
springmemcached
Spring3.1 Cache注解
依赖jar包:
<!-- simple-spring-memcached -->
<dependency>
<groupId>com.google.code.simple-spring-memcached</groupId>
<artifactId>simple-s
- apache commons io包快速入门
jackyrong
apache commons
原文参考
http://www.javacodegeeks.com/2014/10/apache-commons-io-tutorial.html
Apache Commons IO 包绝对是好东西,地址在http://commons.apache.org/proper/commons-io/,下面用例子分别介绍:
1) 工具类
2
- 如何学习编程
lampcy
java编程C++c
首先,我想说一下学习思想.学编程其实跟网络游戏有着类似的效果.开始的时候,你会对那些代码,函数等产生很大的兴趣,尤其是刚接触编程的人,刚学习第一种语言的人.可是,当你一步步深入的时候,你会发现你没有了以前那种斗志.就好象你在玩韩国泡菜网游似的,玩到一定程度,每天就是练级练级,完全是一个想冲到高级别的意志力在支持着你.而学编程就更难了,学了两个月后,总是觉得你好象全都学会了,却又什么都做不了,又没有
- 架构师之spring-----spring3.0新特性的bean加载控制@DependsOn和@Lazy
nannan408
Spring3
1.前言。
如题。
2.描述。
@DependsOn用于强制初始化其他Bean。可以修饰Bean类或方法,使用该Annotation时可以指定一个字符串数组作为参数,每个数组元素对应于一个强制初始化的Bean。
@DependsOn({"steelAxe","abc"})
@Comp
- Spring4+quartz2的配置和代码方式调度
Everyday都不同
代码配置spring4quartz2.x定时任务
前言:这些天简直被quartz虐哭。。因为quartz 2.x版本相比quartz1.x版本的API改动太多,所以,只好自己去查阅底层API……
quartz定时任务必须搞清楚几个概念:
JobDetail——处理类
Trigger——触发器,指定触发时间,必须要有JobDetail属性,即触发对象
Scheduler——调度器,组织处理类和触发器,配置方式一般只需指定触发
- Hibernate入门
tntxia
Hibernate
前言
使用面向对象的语言和关系型的数据库,开发起来很繁琐,费时。由于现在流行的数据库都不面向对象。Hibernate 是一个Java的ORM(Object/Relational Mapping)解决方案。
Hibernte不仅关心把Java对象对应到数据库的表中,而且提供了请求和检索的方法。简化了手工进行JDBC操作的流程。
如
- Math类
xiaoxing598
Math
一、Java中的数字(Math)类是final类,不可继承。
1、常数 PI:double圆周率 E:double自然对数
2、截取(注意方法的返回类型) double ceil(double d) 返回不小于d的最小整数 double floor(double d) 返回不大于d的整最大数 int round(float f) 返回四舍五入后的整数 long round