手动执行 GC 操作
public class SystemGCTest {
public static void main(String[] args) {
new SystemGCTest();
System.gc();//提醒jvm的垃圾回收器执行gc,但是不确定是否马上执行gc
//与Runtime.getRuntime().gc();的作用一样。
// System.runFinalization();//强制调用使用引用的对象的finalize()方法
}
//如果发生了GC,这个finalize()一定会被调用
@Override
protected void finalize() throws Throwable {
super.finalize();
System.out.println("SystemGCTest 重写了finalize()");
}
}
输出结果不确定:有时候会调用 finalize() 方法,有时候并不会调用
输出结果不确定:有时候会调用 finalize() 方法,有时候并不会调用
手动 GC 理解不可达对象的回收行为
//加上参数: -XX:+PrintGCDetails
public class LocalVarGC {
public void localvarGC1() {
byte[] buffer = new byte[10 * 1024 * 1024];//10MB
System.gc();
}
public void localvarGC2() {
byte[] buffer = new byte[10 * 1024 * 1024];
buffer = null;
System.gc();
}
public void localvarGC3() {
{
byte[] buffer = new byte[10 * 1024 * 1024];
}
System.gc();
}
public void localvarGC4() {
{
byte[] buffer = new byte[10 * 1024 * 1024];
}
int value = 10;
System.gc();
}
public void localvarGC5() {
localvarGC1();
System.gc();
}
public static void main(String[] args) {
LocalVarGC local = new LocalVarGC();
//通过在main方法调用这几个方法进行测试
local.localvarGC1();
}
}
执行 System.gc() 仅仅是将年轻代的 buffer 数组对象放到了老年代,buffer对象仍然没有回收
由于 buffer 数组对象没有引用指向它,执行 System.gc() 将被回收
虽然出了代码块的作用域,但是 buffer 数组对象并没有被回收
原因:
1、来看看字节码:实例方法局部变量表第一个变量肯定是 this
2、你有没有看到,局部变量表的大小是 2。但是局部变量表里只有一个索引为0的啊?那索引为1的是哪个局部变量呢?实际上索引为1的位置是buffer在占用着,执行 System.gc() 时,栈中还有 buffer 变量指向堆中的字节数组,所以没有进行GC
3、那么这种代码块的情况,什么时候会被GC呢?我们来看第四个方法
4、调用 localvarGC4() 方法
Q:就多定义了一个局部变量 value ,就可以把字节数组回收了呢?
A:局部变量表长度为 2 ,这说明了出了代码块时,buffer 就出了其作用域范围,此时没有为 value 开启新的槽,value 变量直接占据了 buffer 变量的槽(Slot),导致堆中的字节数组没有引用再指向它,执行 System.gc() 时被回收。看,value 位于局部变量表中索引为 1 的位置。value这个局部变量把原本属于buffer的slot给占用了,这样栈上就没有buffer变量指向new byte[10 * 1024 * 1024]实例了。
5.调用 localvarGC5() 方法
局部变量除了方法范围就是失效了,堆中的字节数组铁定被回收
内存溢出(OOM)原因分析
- 也称作“存储渗漏”。严格来说,只有对象不会再被程序用到了,但是GC又不能回收他们的情况,才叫内存泄漏。
- 但实际情况很多时候一些不太好的实践(或疏忽)会导致对象的生命周期变得很长甚至导致OOM,也可以叫做宽泛意义上的“内存泄漏”。
- 尽管内存泄漏并不会立刻引起程序崩溃,但是一旦发生内存泄漏,程序中的可用内存就会被逐步蚕食,直至耗尽所有内存,最终出现OutofMemory异常,导致程序崩溃。
- 注意,这里的存储空间并不是指物理内存,而是指虚拟内存大小,这个虚拟内存大小取决于磁盘交换区设定的大小。
- 左边的图:Java使用可达性分析算法,最上面的数据不可达,就是需要被回收的对象。
- 右边的图:后期有一些对象不用了,按道理应该断开引用,但是存在一些链没有断开(图示中的Forgotten Reference Memory Leak),从而导致没有办法被回收。
- 单例模式
单例的生命周期和应用程序是一样长的,所以在单例程序中,如果持有对外部对象的引用的话,那么这个外部对象是不能被回收的,则会导致内存泄漏的产生。- 一些提供close()的资源未关闭导致内存泄漏
数据库连接 dataSourse.getConnection(),网络连接socket和io连接必须手动close,否则是不能被回收的。
- STW事件和采用哪款GC无关,所有的GC都有这个事件。
- 哪怕是G1也不能完全避免Stop-the-world情况发生,只能说垃圾回收器越来越优秀,回收效率越来越高,尽可能地缩短了暂停时间。
- STW是JVM在后台自动发起和自动完成的。在用户不可见的情况下,把用户正常的工作线程全部停掉。
- 开发中不要用System.gc() ,这会导致Stop-the-World的发生。
- 并发,指的是多个事情,在同一时间段内同时发生了。
- 并行,指的是多个事情,在同一时间点上(或者说同一时刻)同时发生了。
- 并发的多个任务之间是互相抢占资源的。并行的多个任务之间是不互相抢占资源的。
- 只有在多CPU或者一个CPU多核的情况中,才会发生并行。否则,看似同时发生的事情,其实都是并发执行的。
- 强引用(StrongReference):最传统的“引用”的定义,是指在程序代码之中普遍存在的引用赋值,即类似“object obj=new Object()”这种引用关系。无论任何情况下,只要强引用关系还存在,垃圾收集器就永远不会回收掉被引用的对象。宁可报OOM,也不会GC强引用
- 软引用(SoftReference):在系统将要发生内存溢出之前,将会把这些对象列入回收范围之中进行第二次回收。如果这次回收后还没有足够的内存,才会抛出内存溢出异常。不够则GC
- 弱引用(WeakReference):被弱引用关联的对象只能生存到下一次垃圾收集之前。当垃圾收集器工作时,无论内存空间是否足够,都会回收掉被弱引用关联的对象。发现即回收
- 虚引用(PhantomReference):一个对象是否有虚引用的存在,完全不会对其生存时间构成影响,也无法通过虚引用来获得一个对象的实例。为一个对象设置虚引用关联的唯一目的就是能在这个对象被收集器回收时收到一个系统通知。
- 强引用可以直接访问目标对象。
- 强引用所指向的对象在任何时候都不会被系统回收,虚拟机宁愿抛出OOM异常,也不会回收强引用所指向对象。
- 强引用可能导致内存泄漏。
在JDK1.2版之后提供了SoftReference类来实现软引用
Object obj = new Object();// 声明强引用
SoftReference<Object> sf = new SoftReference<>(obj);
obj = null; //销毁强引用
在JDK1.2版之后提供了WeakReference类来实现弱引用
// 声明强引用
Object obj = new Object();
WeakReference<Object> sf = new WeakReference<>(obj);
obj = null; //销毁强引用
弱引用对象与软引用对象的最大不同就在于,当GC在进行回收时,需要通过算法检查是否回收软引用对象,而对于弱引用对象,GC总是进行回收。弱引用对象更容易、更快被GC回收。
面试题:你开发中使用过WeakHashMap吗?
弱引用代码举例
public class WeakReferenceTest {
public static class User {
public User(int id, String name) {
this.id = id;
this.name = name;
}
public int id;
public String name;
@Override
public String toString() {
return "[id=" + id + ", name=" + name + "] ";
}
}
public static void main(String[] args) {
//构造了弱引用
WeakReference<User> userWeakRef = new WeakReference<User>(new User(1, "songhk"));
//从弱引用中重新获取对象
System.out.println(userWeakRef.get());
System.gc();
// 不管当前内存空间足够与否,都会回收它的内存
System.out.println("After GC:");
//重新尝试从弱引用中获取对象
System.out.println(userWeakRef.get());
}
}
执行垃圾回收后,软引用对象必定被清除
[id=1, name=songhk]
After GC:
null
Process finished with exit code 0
在JDK1.2版之后提供了PhantomReference类来实现虚引用。
// 声明强引用
Object obj = new Object();
// 声明引用队列
ReferenceQueue phantomQueue = new ReferenceQueue();
// 声明虚引用(还需要传入引用队列)
PhantomReference<Object> sf = new PhantomReference<>(obj, phantomQueue);
obj = null;