系统架构设计师学习之路(34)

6.4 系统架构文档化

6.4.1 模型概述
软件架构用来处理软件高层次结构的设计和实施。
Perry和Wolfe使用一个精确的公式来表达,该公式由Boehm做了进一步修改。
软件架构={元素,形式,关系/约束}
软件架构涉及到抽象、分解和组合、风格和美学。
我们由多个视图或视角组成的模型来描述它:

  • 逻辑视图,设计的对象模型(使用面向对象的设计方法时)。
  • 过程视图,捕捉设计的并发和同步特征。
  • 物理视图,描述了软件到硬件的映射,反映了分布式特征。
  • 开发视图:描述了在开发环境中软件的静态组织结构。

架构的描述,即所做的各种决定,可以围绕这四个视图来组织,然后由一些用例或场景来说明,从而形成了第五个视图。
Rational “4+1”视图模型:
系统架构设计师学习之路(34)_第1张图片
我们在每个视图上独立应用Perry&Wolf的公式,即定义一个所使用的元素集合(组件、容器、连接符),捕获工作形式和模式,并且捕获关系及约束,将架构与某些需求连接起来。每种视图使用自身所特有的表达法——蓝图来描述,并且架构师可以对每种视图选用特定的架构风格,从而允许系统中多种风格并存。
“4+1”视图模型具有相当的“普遍性”,因此可以使用其他的标注方法和工具,也可以采用其他的设计方法,特别是对于逻辑和过程的分解。

6.4.2 逻辑结构
逻辑架构主要支持功能性需求,即在为用户提供服务方面系统所应该提供的功能。系统分解为一系列的关键抽象,(大多数)来自于问题域,表现为对象或对象类的形式。它们采用抽象、封装和继承的原理。分解并不仅仅是为了功能分析,而且用来识别遍布系统各个部分的通用机制和设计元素。我们使用 Rational/Booch 方法来表示逻辑架构,借助于类图和类模板的手段 。类图用来显示一个类的集合和它们的逻辑关系:关联、使用、组合、继承等。相似的类可以划分成类集合。类模板关注于单个类,它们强调主要的类操作,并且识别关键的对象特征。如果需要定义对象的内部行为,则使用状态转换图或状态图来完成。公共机制或服务可以在类功能 (class utilities)中定义。对于数据驱动程度高的应用程序,可以使用其他形式的逻辑视图,例如 E-R 图,来代替面向对象的方法(OO approach)。
基本的逻辑蓝图表示法:
系统架构设计师学习之路(34)_第2张图片
6.4.3 进程架构
进程架构考虑一些非功能性的需求,如性能和可用性。它解决并发性、分布性、系统完整性、容错性的问题,以及逻辑视图的主要抽象如何与进程结构相配合在一起——即在哪个控制线程上,对象的操作被实际执行。

进程架构可以在几种层次的抽象上进行描述,每个层次针对不同的问题。在最高的层次上,进程架构可以视为一组独立执行的通信程序(叫作"processes")的逻辑网络,它们分布在整个一组硬件资源上,这些资源通过 LAN 或者 WAN 连接起来。多个逻辑网络可能同时并存,共享相同的物理资源。例如,独立的逻辑网络可能用于支持离线系统与在线系统的分离,或者支持软件的模拟版本和测试版本的共存。

进程是构成可执行单元任务的分组。进程代表了可以进行策略控制过程架构的层次(即:开始、恢复、重新配置及关闭)。另外,进程可以就处理负载的分布式增强或可用性的提高而不断地被重复。

接着,我们可以区别主要任务、次要任务。主要任务是可以唯一处理的架构元素;次要任务是由于实施原因而引入的局部附加任务(周期性活动、缓冲、暂停等等)。它们可以作为 Ada Task 或轻量线程来实施。 主要任务的通讯途径是良好定义的交互任务通信机制:基于消息的同步或异步通信服务、远程过程调用、事件广播等。次要任务则以会见或共享内存来通信。在同一过程或处理节点上,主要任务不应对它们的分配做出任何假定。

消息流、过程负载可以基于过程蓝图来进行评估,同样可以使用哑负载来实现"中空"的进程架构,并测量在目标系统上的性能。正如 Filarey et al. 在他的 Eurocontrol 实验中描述的那样。

我们所使用的进程视图的表示方法是从Booch最初为 Ada 任务推荐的表示方法扩展而来。同样,用来所使用的表示法关注在架构上具有重要意义的元素,典型的进程蓝图表示法如下图所示。
系统架构设计师学习之路(34)_第3张图片
所有的终端由单个的 Termal process 处理,其中 Termal process 由输入队列中的消息进行驱动。Controller 对象在组成控制过程三个任务之中的一项任务上执行:Low cycle rate task 扫描所有的非活动终端(200 ms),将 High cycle rate task(10 ms)扫描清单中的终端激活,其中 High cycle rate task 检测任何重要的状态变化,将它们传递给 Main controller task,由它来对状态的变更进行解释,并通过向对应的终端发送消息来通信。这里 Controller 过程中的通信通过共享内存来实现。

6.4.4 开发架构
开发架构关注软件开发环境下实际模块的组织。软件打包成小的程序块(程序库或子系统),它们可以由一位或几位开发人员来开发。子系统可以组织成分层结构,每个层为上一层提供良好定义的接口。

系统的开发架构用模块和子系统图来表达,显示了"输出"和"输入"关系。完整的开发架构只有当所有软件元素被识别后才能加以描述。但是,可以列出控制开发架构的规则:分块、分组和可见性。

大部分情况下,开发架构考虑的内部需求与以下几项因素有关:开发难度、软件管理、重用性和通用性及由工具集、编程语言所带来的限制。开发架构视图是各种活动的基础,如:需求分配、团队工作的分配(或团队机构)、成本评估和计划、项目进度的监控、软件重用性、移植性和安全性。它是建立产品线的基础。

来自 Rational 的 Apex 开发环境支持开发架构的定义和实现、和前文描述的分层策略,以及设计规则的实施。Rational Rose 可以在模块和子系统层次上绘制开发蓝图,并支持开发源代码(Ada、C++)进程的正向和反向工程。

关于开发视图的风格,推荐使用分层(layered)的风格,定义 4 到 6 个子系统层。每层均具有良好定义的职责。设计规则是某层子系统依赖同一层或低一层的子系统,从而最大程度地减少了具有复杂模块依赖关系的网络的开发量,得到层次式的简单策略。

6.4.5 物理架构
物理架构主要关注系统非功能性的需求,如可用性、可靠性(容错性),性能(吞吐量)和可伸缩性。软件在计算机网络或处理节点上运行,被识别的各种元素(网络、过程、任务和对象),需要被映射至不同的节点;我们希望使用不同的物理配置:一些用于开发和测试,另外一些则用于不同地点和不同客户的部署。因此软件至节点的映射需要高度的灵活性及对源代码产生最小的影响。
物理蓝图的表示法,如下图所示。
系统架构设计师学习之路(34)_第4张图片
大型系统中的物理蓝图会变得非常混乱,所以它们可以采用多种形式,有或者没有来自进程视图的映射均可。

TRW 的 UNAS 提供了数据驱动方法将过程架构映射至物理架构,该方法允许大量的映射 的变更而无需修改源代码。

6.4.6 场景
四种视图的元素通过数量比较少的一组重要场景(更常见的是用例)进行无缝协同工作,我们为场景描述相应的脚本(对象之间和过程之间的交互序列)。
在某种意义上场景是最重要的需求抽象,它们的设计使用对象场景图和对象交互图来表示。

该视图是其他视图的冗余(因此"+1"),但它起到了两个作用:
(1)作为一项驱动因素来发现架构设计过程中的架构元素,这一点将在下文中讨论。
(2)作为架构设计结束后的一项验证和说明功能,既以视图的角度来说明又作为架构原型测试的出发点。

场景表示法与组件逻辑视图非常相似,但它使用过程视图的连接符来表示对象之间的交互,注意对象实例使用实线来表达。至于逻辑蓝图,我们使用 Rational Rose 来捕获并管理对象场景。

6.4.7 迭代过程
在进行文档化时,提倡一种更具有迭代性质的方法,即架构先被原形化、测试、估量、分析,然后在一系列的迭代过程中被细化。该方法除了减少与架构相关的风险之外,对于项目而言还有其他优点:团队合作、培训,加深对架构的理解,深入程序和工具等等(此处提及的是演进的原形,逐渐发展成为系统,而不是一次性的试验性的原形)。这种迭代方法还能够使需求被细化、成熟化并能够被更好地理解。

场景驱动(scenario-driven)的方法

系统大多数关键的功能以场景(或 use cases)的形式被捕获。关键意味着:最重要的功能,系统存在的理由,或使用频率最高的功能,或体现了必须减轻的一些重要的技术风险。

1)开始阶段:
(1)基于风险和重要性为某次迭代选择一些场景。场景可能被归纳为对若干用户需求的抽象。
(2)形成"稻草人式的架构"。然后对场景进行"描述",以识别主要的抽象(类、机制、过程、子系统),如 Rubin 与 Goldberg6 所指出的 ―― 分解成为序列对(对象、操作)。
(3)所发现的架构元素被分布到 4 个蓝图中:逻辑蓝图、进程蓝图、开发蓝图和物理蓝图。
(4)然后实施、测试、度量该架构,这项分析可能检测到一些缺点或潜在的增强要求。
(5)捕获经验教训。

2)循环阶段:
(1)下一个迭代过程开始进行。
(2)重新评估风险.
(3)扩展考虑的场景选择板。
(4)选择能减轻风险或提高结构覆盖的额外的少量场景。
(5)然后试着在原先的架构中描述这些场景。
(6)发现额外的架构元素,或有时还需要找出适应这些场景所需的重要架构变更。
(7)更新4个主要视图:逻辑视图、进程视图、开发视图和物理视图。
(8)根据变更修订现有的场景。
(9)升级实现工具(架构原型)来支持新的、扩展了的场景集合。
(10)测试。如果可能的话,在实际的目标环境和负载下进行测试。
(11)然后评审这五个视图来检测简洁性、可重用性和通用性的潜在问题。
(12)更新设计准则和基本原理。
(13)捕获经验教训。
(14)终止循环。

为了实际的系统,初始的架构原型需要进行演进 。较好的情况是在经过 2 次或 3 次迭代之后,结构变得稳定:主要的抽象都已被找到。子系统和过程都已经完成,以及所有的接口都已经实现。接下来则是软件设计的范畴,这个阶段可能也会用到相似的方法和过程。

这些迭代过程的持续时间参差不齐,原因在于:所实施项目的规模,参与项目人员的数量、他们对本领域和方法的熟悉程度,以及该系统和开发组织的熟悉程度等等。因而较小的项目迭代过程可能持续 2-3 周(例如,10 K SLOC),而大型的项目可能为 6-9 个月(例如,700 K SLOC)。

你可能感兴趣的:(2020年学习笔记——系统架构)