本文想分享的是如何准备阿里面试的以及面试过程的所想所得,希望能帮到你。
首先,可能要让你们失望的是,这篇文章不会有大篇幅的面试题答案。如果想要看这方面的内容,可以看我之前的文章。感谢关注
Android基础知识点比较多,看图。
建议阅读:
《Android开发艺术探索》
Activity
的四大启动模式:
standard
:标准模式,每次都会在活动栈中生成一个新的Activity
实例。通常我们使用的活动都是标准模式。singleTop
:栈顶复用,如果Activity
实例已经存在栈顶,那么就不会在活动栈中创建新的实例。比较常见的场景就是给通知跳转的Activity
设置,因为你肯定不想前台Activity
已经是该Activity
的情况下,点击通知,又给你再创建一个同样的Activity
。singleTask
:栈内复用,如果Activity
实例在当前栈中已经存在,就会将当前Activity
实例上面的其他Activity
实例都移除栈。常见于跳转到主界面。singleInstance
:单实例模式,创建一个新的任务栈,这个活动实例独自处在这个活动栈中。首先,Activity
有三类:
Activity
:活跃的Activity
,正在和用户交互的Activity
。Activity
:常见于栈顶的Activity
背景透明,处在其下面的Activity
就是可见但是不可和用户交互。Activity
:已经被暂停的Activity
,比如已经执行了onStop
方法。所以,onStart
和onStop
通常指的是当前活动是否位于前台这个角度,而onResume
和onPause
从是否可见这个角度来讲的。
平时的屏幕适配一般采用的头条的屏幕适配方案。简单来说,以屏幕的一边作为适配,通常是宽。
原理:设备像素px
和设备独立像素dp
之间的关系是
px = dp * density
假设UI给的设计图屏幕宽度基于360dp,那么设备宽的像素点已知,即px,dp也已知,360dp,所以density = px / dp
,之后根据这个修改系统中跟density
相关的知识点即可。
Android消息机制中的四大概念:
ThreadLocal
:当前线程存储的数据仅能从当前线程取出。MessageQueue
:具有时间优先级的消息队列。Looper
:轮询消息队列,看是否有新的消息到来。Handler
:具体处理逻辑的地方。过程:
Handler
,如果是在子线程中创建,还需要调用Looper#prepare()
,在Handler
的构造函数中,会绑定其中的Looper
和MessageQueue
。Handler
发送。MessageQueue
:因为Handler
中绑定着消息队列,所以Message
很自然的被放进消息队列。Looper
轮询消息队列:Looper
是一个死循环,一直观察有没有新的消息到来,之后从Message
取出绑定的Handler
,最后调用Handler
中的处理逻辑,这一切都发生在Looper
循环的线程,这也是Handler
能够在指定线程处理任务的原因。ANR
,Looper.loop()
这个操作本身不会导致这个情况。介绍: IdleHandler是在Hanlder空闲时处理空闲任务的一种机制。
执行场景:
MessageQueue
没有消息,队列为空的时候。MessageQueue
属于延迟消息,当前没有消息执行的时候。会不会发生死循环: 答案是否定的,MessageQueue
使用计数的方法保证一次调用MessageQueue#next
方法只会使用一次的IdleHandler
集合。
刚哥的《Android开发艺术探索》已经很全面了,建议阅读。
在已知图片的长和宽的像素的情况下,影响内存大小的因素会有资源文件位置和像素点大小。
像素点大小: 常见的像素点有:
资源文件位置: 不同dpi对应存放的文件夹
比如一个一张图片的像素为180*180px
,dpi
(设备独立像素密度)为320,如果它仅仅存放在drawable-hdpi
,则有:
横向像素点 = 180 * 320/240 + 0.5f = 240 px
纵向像素点 = 180 * 320/240 + 0.5f = 240 px
如果 如果它仅仅存放在drawable-xxhdpi
,则有:
横向像素点 = 180 * 320/480 + 0.5f = 120 px
纵向像素点 = 180 * 320/480 + 0.5f = 120 px
所以,对于一张180*180px
的图片,设备dpi为320,资源图片仅仅存在drawable-hdpi
,像素点大小为ARGB_4444
,最后生成的文件内存大小为:
横向像素点 = 180 * 320/240 + 0.5f = 240 px
纵向像素点 = 180 * 320/240 + 0.5f = 240 px
内存大小 = 240 * 240 * 2 = 115200byte 约等于 112.5kb
Bitmap的高效加载在Glide中也用到了,思路:
BitmapFactory.Options
中的inJustDecodeBounds
为true,可以帮助我们在不加载进内存的方式获得Bitmap
的长和宽。BitmapFactory.Options
中的inSampleSize
属性。BitmapFactory.Options
中的inJustDecodeBounds
为false,将图片加载进内存,进而设置到控件中。Android进阶中重点考察Android Framework
、性能优化和第三方框架。
Binder是Android中特有的IPC方式,引用《Android开发艺术探索》中的话(略有改动):
从IPC角度来说,Binder是Android中的一种跨进程通信方式;Binder还可以理解为虚拟的物理设备,它的设备驱动是/dev/binder;从
Android Framework
来讲,Binder是Service Manager
连接各种Manager
和对应的ManagerService
的桥梁。从面向对象和CS模型来讲,Client
通过Binder和远程的Server
进行通讯。
基于Binder,Android还实现了其他的IPC方式,比如AIDL
、Messenger
和ContentProvider
。
与其他IPC比较:
如果你看到了这里,觉得文章写得不错就给个赞呗?如果你觉得那里值得改进的,请给我留言。一定会认真查询,修正不足。谢谢。
最后文末放上一个福利:GitHub地址
PS:我GitHub中有大量高阶Android学习视频资料和面试资料包~
8F%91%E4%B8%8D%E4%BC%9A%E8%BF%99%E4%BA%9B%EF%BC%9F%E5%A6%82%E4%BD%95%E9%9D%A2%E8%AF%95%E6%8B%BF%E9%AB%98%E8%96%AA%EF%BC%81.md)**
PS:我GitHub中有大量高阶Android学习视频资料和面试资料包~
欢迎大家一起交流讨论啊~