Actor是基于Policy-Gradients。可以选择连续动作,但是必须循环一个回合才可以更新策略。学习效率低。
Critic网络继承了Q-learning 的传统,依然可以逐步更新。
首先导入需要的包,这没什么好说的。
import numpy as np
import tensorflow as tf
import gym
import matplotlib.pyplot as plt
np.random.seed(2)
tf.set_random_seed(2) # reproducible
# 超参数
OUTPUT_GRAPH = False
MAX_EPISODE = 5
DISPLAY_REWARD_THRESHOLD = 200 # 刷新阈值
MAX_EP_STEPS = 500 # 最大迭代次数
RENDER = False # 渲染开关,这玩意儿是gym输出动画的开关
GAMMA = 0.9 # 衰变值
LR_A = 0.001 # Actor学习率
LR_C = 0.01 # Critic学习率
env = gym.make('CartPole-v0')
env.seed(1)
env = env.unwrapped
N_F = env.observation_space.shape[0] # 状态空间
N_A = env.action_space.n # 动作空间
Actor网络
class Actor(object):
def __init__(self, sess, n_features, n_actions, lr=0.001):
self.sess = sess
self.s = tf.placeholder(tf.float32, [1, n_features], "state")
self.a = tf.placeholder(tf.int32, None, "act")
self.td_error = tf.placeholder(tf.float32, None, "td_error") # TD_error
with tf.variable_scope('Actor'):
l1 = tf.layers.dense(
inputs=self.s,
units=20, # number of hidden units
activation=tf.nn.relu,
kernel_initializer=tf.random_normal_initializer(0., .1), # weights
bias_initializer=tf.constant_initializer(0.1), # biases
name='l1'
)
self.acts_prob = tf.layers.dense(
inputs=l1,
units=n_actions, # output units
activation=tf.nn.softmax, # get action probabilities
kernel_initializer=tf.random_normal_initializer(0., .1), # weights
bias_initializer=tf.constant_initializer(0.1), # biases
name='acts_prob'
)
with tf.variable_scope('exp_v'):
log_prob = tf.log(self.acts_prob[0, self.a])
self.exp_v = tf.reduce_mean(log_prob * self.td_error) # advantage (TD_error) guided loss
with tf.variable_scope('train'):
self.train_op = tf.train.AdamOptimizer(lr).minimize(-self.exp_v) # minimize(-exp_v) = maximize(exp_v)
def learn(self, s, a, td):
s = s[np.newaxis, :]
feed_dict = {self.s: s, self.a: a, self.td_error: td}
_, exp_v = self.sess.run([self.train_op, self.exp_v], feed_dict)
return exp_v
def choose_action(self, s):
s = s[np.newaxis, :]
probs = self.sess.run(self.acts_prob, {self.s: s})
return np.random.choice(np.arange(probs.shape[1]), p=probs.ravel()) # return a int
具体流程如下:
1、两个全连接层网络,一层神经元的个数为20个,第二层的输入是第一层l1的输出。
2、loss依然是Policy-Gradients的-log(probs)*vt。probs可以看出是第二层神经网络的输出,是动作空间下所有动作的概率。vt是Critic计算出的时间差分误差td_error。
3、训练步骤。喂入动作,状态。和td误差即可。
4、选择动作.
Critic网络
伟大的Critic网络负责给Actor网络最后输出的动作打分,并通过td_error返回给Actor用于更新Actor的参数。同样的也是两层网络。
但是输入有三个。但是和Actor的三个输入不同。因为a是固定的值。
输入当前分别为:当前状态,当前奖励,下一个状态的折扣奖励:
class Critic(object):
def __init__(self, sess, n_features, lr=0.01):
self.sess = sess
self.s = tf.placeholder(tf.float32, [1, n_features], "state")
self.v_ = tf.placeholder(tf.float32, [1, 1], "v_next")
self.r = tf.placeholder(tf.float32, None, 'r')
with tf.variable_scope('Critic'):
l1 = tf.layers.dense(
inputs=self.s,
units=20, # number of hidden units
activation=tf.nn.relu, # None
# have to be linear to make sure the convergence of actor.
# But linear approximator seems hardly learns the correct Q.
kernel_initializer=tf.random_normal_initializer(0., .1), # weights
bias_initializer=tf.constant_initializer(0.1), # biases
name='l1'
)
self.v = tf.layers.dense(
inputs=l1,
units=1, # output units
activation=None,
kernel_initializer=tf.random_normal_initializer(0., .1), # weights
bias_initializer=tf.constant_initializer(0.1), # biases
name='V'
)
with tf.variable_scope('squared_TD_error'):
self.td_error = self.r + GAMMA * self.v_ - self.v
self.loss = tf.square(self.td_error) # TD_error = (r+gamma*V_next) - V_eval
with tf.variable_scope('train'):
self.train_op = tf.train.AdamOptimizer(lr).minimize(self.loss)
def learn(self, s, r, s_):
s, s_ = s[np.newaxis, :], s_[np.newaxis, :]
v_ = self.sess.run(self.v, {self.s: s_})
td_error, _ = self.sess.run([self.td_error, self.train_op],
{self.s: s, self.v_: v_, self.r: r})
return td_error
具体流程如下:
1、两个全连接层网络,一层神经元的个数为20个,第二层的输入是第一层l1的输出。可以发现这个输出只有一维度。就是a做这个动作的奖励。
2、loss:时间差分值的平方(取出下一时刻的动作的奖励)
3、学习步骤:Critic神经网络前向传播一波,将下一个输入,得到评价动作的值,和第一步一样,输入当前状态,当前奖励,下一个状态的折扣奖励v_,用Adam优化器反向传播一波。
.
大功告成网络
sess = tf.Session()
actor = Actor(sess, n_features=N_F, n_actions=N_A, lr=LR_A) # 初始化Actor
critic = Critic(sess, n_features=N_F, lr=LR_C) # 初始化Critic
sess.run(tf.global_variables_initializer()) # 初始化参数
if OUTPUT_GRAPH:
tf.summary.FileWriter("logs/", sess.graph) # 输出日志
track_r = [] # 每回合的所有奖励
for i_episode in range(MAX_EPISODE):
s = env.reset() # gym环境初始化
t = 0
while True:
if RENDER: env.render()
a = actor.choose_action(s) # Actor选取动作
s_, r, done, info = env.step(a) # 环境反馈
if done: r = -20 # 回合结束的惩罚
track_r.append(r) # 记录回报值r
td_error = critic.learn(s, r, s_) # Critic 学习
actor.learn(s, a, td_error) # Actor 学习
s = s_
t += 1
if done or t >= MAX_EP_STEPS:
# 回合结束, 打印回合累积奖励
ep_rs_sum = sum(track_r)
if 'running_reward' not in globals():
running_reward = ep_rs_sum
else:
running_reward = running_reward * 0.95 + ep_rs_sum * 0.05
if running_reward > DISPLAY_REWARD_THRESHOLD: RENDER = True # rendering
print("episode:", i_episode, " reward:", int(running_reward))
break