作为一个输出过程,自己看看
如果想看具体题目或者图片,我都放在markji上了,直接查王道机试就能翻到,全是王道的干货
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-03IV5bXI-1679073159864)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230316191331653.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-z4MxCYiK-1679073159865)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230316191807515.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-lbVk9kFw-1679073159865)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230316192827412.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-CZqICYj2-1679073159866)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230316193427180.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-qbjQtOE4-1679073159866)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230316193603500.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-HDNo9Rz2-1679073159866)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230316193958001.png)]
C++中的优先队列是一个容器适配器,它提供了一种特殊的数据结构,其中的元素按照一定的顺序排列,可以快速地访问和删除其中某个元素。在优先队列中,每个元素都有一个优先级,元素的处理顺序基于其优先级而不是它们在队列中的位置。
C++中的优先队列实现了一个堆数据结构,它允许在O(log n)的时间内访问堆顶元素,以及在O(log n)的时间内插入和删除元素。优先队列可以使用STL头文件“”中提供的“priority_queue”模板类实现。
下面是使用优先队列的一个简单示例代码:
cpp #include
#include using namespace std; int main() { priority_queue pq; pq.push(10); pq.push(5); pq.push(15); cout << pq.top() << endl; // 输出 15 pq.pop(); cout << pq.top() << endl; // 输出 10 return 0; } 在这个示例中,我们创建了一个整数类型的优先队列pq,然后向队列中插入三个元素(10、5、15)。
在访问队列中的元素时,我们使用了pq.top()函数,它返回当前队列中优先级最高的元素,即15。
接着,我们通过调用pq.pop()函数删除了该元素,并再次用pq.top()函数访问了队列中优先级最高的元素,即10。
值得注意的是,优先队列的默认情况下是以大根堆(大的元素优先级高)的形式存储元素的。如果想要实现小根堆(小的元素优先级高),可以将优先队列声明为priority_queue
pq;
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-hn1ExoyO-1679073159866)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230317175741118.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-vcg0CtOf-1679073159867)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230317175958770.png)]
默认构造的是大根堆,那我们如何构造其小根堆呢-答案:运算符重载
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-KyOUUsBJ-1679073159867)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230317181012190.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-bRlV8G57-1679073159867)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230317181016737.png)]
#include
#include
using namespace std;
struct Element{
int val;
};
//运算符重载
bool operator <(Element lhs,Element rhs){
//return true;
//正常情况下是大根堆是默认:lhs《rhs为真即交换两个元素
//故如果是小根堆那么rhs《lhs为真
return rhs.val queue;
int arr[]={2,4,2,1,6};
for (int i = 0; i < 5; ++i) {
Element e;
e.val=arr[i];
queue.push(e);
}
}
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-rn9VJJUG-1679073159868)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230317193209936.png)]
时间较为严格的情况下可以用unordered_map
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-D7CXZLoD-1679073159869)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230317193819364.png)]
注意:在使用map时,一般会将每个键-值对封装成pair,并将它们插入到map中。在map中,每个键唯一对应一个pair对象,通过键可以访问到对应的pair对象。pair类的作用在于将两个不同的数据类型组合成一个数据类型,方便我们在map中存储键-值对。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-XYMToDhm-1679073159869)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230317194137076.png)]
在map中,每个键值对都是一个pair对象,其中第一个元素(也就是pair的first成员)是键,第二个元素(也就是pair的second成员)是值。我们可以通过迭代器来访问map中的元素,其中迭代器指向的是pair对象。我们可以使用it->first访问pair对象中的第一个元素,也就是该键所对应的值。
find方法
用来检查某个建是否存在
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ufXBgOcX-1679073159869)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230317194513491.png)]
map中的find方法用于在map中查找指定的键,并返回指向该键值对的迭代器。如果map中存在该键,则find方法返回一个指向该键值对的迭代器;否则返回一个指向map尾部的迭代器end()。通常情况下,我们可以使用迭代器来访问查找到的键值对。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-tujKbonc-1679073159870)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230318003552047.png)]
输入两个整数 �,�a,b,输出它们的和(∣�∣,∣�∣≤109∣a∣,∣b∣≤109)。
注意
- Pascal 使用
integer
会爆掉哦!- 有负数哦!
- C/C++ 的 main 函数必须是
int
类型,而且 C 最后要return 0
。这不仅对洛谷其他题目有效,而且也是 NOIP/CSP/NOI 比赛的要求!
#include
using namespace std;//为了不加前缀名
int main() {
int a, b;
cin >> a >> b;
cout << a + b;
return 0;
}
#include
int main() {
int a, b;
scanf("%d%d", a, b);
printf("%d", a + b);
return 0;
}
//c++
#include
using namespace std;
//第一种方法就是讲元看成10
int main() {
int a, b;
cin >> a >> b;
cout << ((a * 10) + b )/( 19);
return 0;
}
//c
#define _CRT_SECURE_NO_WARNINGS
#include
int main() {
int a,b;
scanf("%d %d", &a, &b);
printf("%d", (a * 10 + b)/ (19));
return 0;
}
[P1422 小玉P1422 小玉家的电费 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)家的电费 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)](https://www.luogu.com.cn/problem/P1422#submit)
#include
#include
using namespace std;
int main() {
int sum;
cin >> sum;
cout << fixed << setprecision(1);//保留小数点后一位
if (sum <= 150) cout << sum * 0.4463;
else if ( sum <=400) cout << 150 * 0.4463 + (sum - 150) * 0.4663;
else cout << 150 * 0.4463 + 250 * 0.4663 + (sum - 400) * 0.5663;
}
/C语言
//c
#define _CRT_SECURE_NO_WARNINGS
#include
int main() {
int sum;
scanf("%d",&sum);
if (sum <= 150) printf("%.1f", sum * 0.4463) ;
else if (sum <= 400) printf("%.1f", 150 * 0.4463 + (sum - 150) * 0.4663) ;
else printf("%.1f", 150 * 0.4463 + 250 * 0.4663 + (sum - 400) * 0.5663) ;
}
%用法
1 要输出float a=1.23234; 保留3位小数的写法为:
printf(“%.3f”,a);
2 输出double b=123.345232; 保留4为小数,写法为:
printf(“%.4lf”,b);
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-7MH08Cxo-1678635540235)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230306000340152.png)]
int main() {
int a, b, c;
for (a = 0; a <= 9; a++) {
for (b = 0; b <= 9; b++) {
for (c = 0; c <= 9; c++) {
if ((a * 100 + b * 10 + c) + (b * 100 + c * 10 + c) == 532)
printf("%d %d %d", a, b, c);
}
}
}
}
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-0gsuyK3Y-1678635540236)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230306023408982.png)]
int main() {
int a, b, c, d,sum;
for (a = 0; a <= 9; ++a) {
for (b = 0; b < +9; ++b) {
for (c = 0; c <= 9; ++c) {
for (d = 0; d <= 9; ++d) {
sum = a * 1000 + b * 100 + c * 10 + d;
if (sum * 9 == (d * 1000 + c * 100 + b * 10 + a)) {
if(sum>=1000)
printf("%d\n", sum);
}
}
}
}
}
}
王道用的是求余!!值得学习%%%%
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-a8oj7vb2-1678635540236)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230306030002374.png)]
int Reverse(int i) {
int k = i * i;
if (k < 10) {
return k;
}
if (10<k &&k< 100) {
int m = k % 10;//个位
int n = k/10;//十位
if (m == n) {
return k;
}
}
if (1000 > k&&k> 100) {
int a = k % 10;
int b = k / 100;
if (a == b) {
return k;
}
}
if (k > 1000&&k<10000) {
int a = k % 10;
int b = k / 10 % 10;//十位
int c = k / 100 % 10;//百位
int d = k / 1000;//千位
if ((a == d) && (b == c)) {
return k;
}
}
if (k > 10000 ) {
int a = k % 10;
int b = k / 10 % 10;//十位
int c = k / 100 % 10;//百位
int d = k / 1000%10;//千位
int e = k / 10000;
if ((a == e) && (b ==d)) {
return k;
}
}
return 0;
}
int main() {
//本质上还是求的是逆序数
//首先小于10肯定是
int i=0;
//再去找对称的数
while (i<= 256) {
if (Reverse(i) == i * i) {
printf("%d\n", i);
}
i++;
}
}
不得不说很久不巧写的方法比较笨==
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-OhQqXc7P-1678635540237)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230306162133904.png)]
int main() {
printf("请输入一个整数\n");
int n,h;
scanf("%d", &h);
int m = h,k;
int H = h + (h - 1) * 3;
for (h; h > 0; --h) {
n = H - m;
k = m;
for (n; n > 0; --n) {
printf(" ");
}
for (k; k >0;k-- ) {
printf("*");
}
m += 2;
printf("\n");
}
}
//第一行为h的话,那么高度为h,即最底部的长度应该是
//H=h+(h-1)*3;
王道解法
int main() {
int h;
while (scanf("%d", &h) != EOF) {
for (int i = 0; i < h; ++i) {
for (int j = 0; j < 2 * h - 2 - 2 * i; ++j) {
printf(" ");
}
for (int j = 0; j < h + 2 * i; ++j) {
printf("*");
}
printf("\n");
}
}
}
char arr[3000][1000];
int main() {
//用二维数组来模拟
//第一步:填空
int h;
while (scanf("%d", &h)!= EOF) {
for (int i = 0; i < h; i++) {
for (int j = 0; j < 3 * h - 2; j++) {
arr[i][j] = ' ';
}
}
//填充完空格开始放星星
int m = h - 1;
int k =0;
for (m; m >= 0; m--) {
for (int n=k ; n<= 3 * h - 2;++n) {
arr[m][n] = '*';
}
k += 2;
}
//打印
for (int i = 0; i < h; i++) {
for (int j = 0; j < 3 * h - 2; j++) {
printf("%c",arr[i][j]);
}
printf("\n");
}
}
}
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-BV0REEMG-1678635540237)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230306172043262.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-pGbPmDMc-1678635540238)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230306172233290.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-NM3eLDF7-1678635540238)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230306172328511.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-W5jrP8CU-1678635540238)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230306172740950.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-zmqRpElS-1678635540239)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230306182210168.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ca2IIKZI-1678635540239)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230306193242901.png)]
错了看了王道解法,记得在markji上去背
int main() {
int n;//外框长度
char inner, outter;
printf("请输入长度以及内外花色\n");
bool flag = true;
while (scanf("%d %c %c", &n, &inner, &outter) != EOF) {
if (flag == true) {
flag = false;
}
else
{
printf("\n");
}
char pattern[80][80] = { 0 };//方便最后以字符串的形式输出
int length = 1;//一开始的外框长度
int x, y;//坐标
char changchar = inner;
for (length = 1, x = n / 2, y = n / 2; length <= n; length = length + 2,--x,--y) {
//填满周围的正方形
for (int i = x, j = y; i < x + length; i++) {
pattern[i][j] = changchar;
}
//左上横线
for (int i = x, j = y; j < y + length; j++) {
pattern[i][j] = changchar;
}
//左下横线
for (int i = x + length - 1, j = y; j < y + length; j++) {
pattern[i][j] = changchar;
}
//右边竖线
for (int i = x, j = y + length - 1; i < x + length; ++i) {
pattern[i][j] = changchar;
}
//做个翻转符号
if (changchar == inner) {
changchar = outter;
}
else
{
changchar = inner;
}
}
//去四角
if (n != 1) {
pattern[0][0] = ' ';
pattern[n - 1][0] = ' ';
pattern[0][n - 1] = ' ';
pattern[n - 1][n - 1] = ' ';
}
//输出图形
for (int i = 0; i < n; i++) {
printf("%s\n", pattern[i]);
}
}
}
//关键代码
//c++引入
//头文件
#include
using namespace std;
头文件cstdio
#include
/*
作用:是C语言标准库中的一个头文件,其全称为"C Standard Input and Output Library"。这个库提供了用于执行输入输出操作的函数。其中包括常用的输入函数scanf()、getchar(),以及输出函数printf()、putchar()等。这些函数可以让程序员在C语言中进行标准输入输出,从而读写文件、屏幕、键盘等设备。
在C语言中,可以用预处理指令“#include ”来引入。一旦引入了这个头文件,就可以在程序中使用库提供的函数。
库函数的使用非常方便,而且效率高。因此,它是C语言程序员经常使用的一个标准库之一。由于C++是基于C语言的,所以在C++中也可以使用库中的函数。但是在C++中,建议使用iostream库进行输入输出操作,因为iostream库比更安全、更易于使用。
*/
using name space 作用解释
在C++中,using namespace std;是一个常用的语句,它的作用是告诉编译器使用std命名空间中的符号。std是C++标准库中许多类和函数所在的命名空间,如果不使用using namespace std语句,那么就需要使用std::来引用这些类和函数,例如std::cout、std::cin等。 使用using namespace std语句可以省略代码中的std::前缀,从而使代码更加简洁易读,但需要注意的是,这样做也会有一些潜在的问题,例如可能会引发命名冲突等问题。因此,一些C++编程规范建议尽可能不要在头文件中使用using namespace std;,而是在具体的源文件中使用。另外,也可以选择只使用需要的部分命名空间,例如using std::cout;只引入std命名空间中的cout符号,而不是整个std命名空间。 总之,using namespace std语句可以简化C++代码的编写,提高代码的可读性,但需要注意一些潜在的问题,并根据实际情况灵活使用。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-3LzETv0w-1678635540239)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230312143313541.png)]
#include
#include
using namespace std;
int main(){
int n;//要输入的数字
while(scanf("%d",&n)!=EOF){
int arr[101];//要输入的数字
for (int i = 0; i < n; ++i){
//一次输入数字同时放入数组
scanf("%d",&arr[i]);
}
//对数组进行排序
sort(arr,arr+n);
//输出
for (int i = 0; i < n; ++i){
printf("%d",arr[i]);
}
}
}
注意点:
arr【i】和arr+i
其实表达意思是完全一样的
arr【i】表示的arr数组中第i号元素的具体值是多少
arr+i表达的意思是arr第i号元素的地址哦
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-OJ6yrOLJ-1678635540240)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230312144815703.png)]
注意end是尾巴后一个元素的位置
默认的排序是升序排序
sort(start,end,compare)//加上一个参数即为compare参数
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-8mkErHDS-1678635540240)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230312145831814.png)]
using namespace std;
bool compare(int lhs,int rhs){
if(lhs>rhs){
return true;
}else{
return false;
}
//也可以写成 return lhs>rhs
//不发生交换时候返回真
}
int main(){
int arr[8];
for (int i = 0; i < 8; ++i) {
scanf("%d",arr+i);
}
sort(arr,arr+8,compare);
for (int i = 0; i < 8; ++i) {
printf("%d",arr[i]);
}
}
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-kx914wzC-1678635540240)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230312181633384.png)]
#include
#include
using namespace std;
bool comp(int i,int j){
//返回true不交换两个元素
/*第一种情况:左奇数右边偶数不交换*/
if(i%2==1&&j%2==0){
return true;
}else if(i%2==1&&j%2==1&&i>j){
//第二种就是判断奇数如果左边大右边小不交换
return true;
}else if(i%2==0&&j%2==0&&i
使用了变长数组(Variable Length Arrays,VLA),即使用了变量n来定义了一个可以放入n个学生对象的数组students。在C++11标准之前,这种定义数组的方式是不合法的,导致代码可移植性不好,编译器的实现也不稳定。因此,应该使用常量或者宏定义来定义数组的长度,例如使用 #define MAX_STUDENT_NUM 100 来定义数组的最大长度
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-JqEMl4P6-1678635540241)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230312192346582.png)]
#include
#include
#define MAX_STUDENT_NUM 100
using namespace std;
struct Student{
int stuNum;
int stuGrade;
};
bool compare(Student lhs,Student rhs){
/*成绩从小到大,排序不变也就是true
* 若成绩相同,学号大小从小到大*/
if(lhs.stuGrade
重要技巧:
由于sort底层(快速排序)其实本身并不是稳定的故我们需要自己去设置一个变量,来令其稳定
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-MkqaAkHy-1678635540241)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230312194125321.png)]
#include
#include
using namespace std;
#define MAX_STUDENT_NUM 100
struct Student{
char name[100];
int score;//成绩
int seq;//保证其有序
};
//升序排序参数
bool upper(Student lhs,Student rhs){
if(lhs.scorerhs.seq){
//相同成绩先录入在前
return true;
}else{
return false;
}
}
//降序排序参数
bool down(Student lhs,Student rhs){
if(lhs.score>rhs.score){
return true;
} else if (lhs.score==rhs.score&&lhs.seq>rhs.seq){
//相同成绩先录入在前
return true;} else{
return false;
}
}
int main(){
Student students[MAX_STUDENT_NUM];
int n,order;//排序人数和排序方法
while (scanf("%d%d",&n,&order)!=EOF){
//依次输入学生信息
int seq;
for (int i = 0; i < n; ++i) {
seq=0;
scanf("%s%d",&students[i].name,&students[i].score);
students[i].seq=seq;
seq++;
}
//开始分析是低到高还是告到底
if(order==1){
//升序的情况
sort(students,students+n, upper);
//输出值
printf("从高到低 成绩\n");
for (int i = 0; i < n; ++i) {
printf("%s %d\n",students[i].name,students[i].score);
}
}
//降序的情况
if(order==0){
sort(students,students+n, down);
printf("从低到高 成绩\n");
for (int i = 0; i < n; ++i) {
printf("%s %d\n",students[i].name,students[i].score);
}
}
}
}
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Oto9TD2s-1678635540241)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230312204056028.png)]
#include
using namespace std;
int main(){
//首先是输入一个数n
int n;
int arr[201];
scanf("%d",&n);
for (int i = 0; i < n; ++i){
scanf("%d",&arr[i]);
}
int x;
scanf("%d",&x);
int i;
for ( i = 0; i < n; ++i){
if(arr[i]==x){
printf("%d\n",i);
break;
}
}
if(i==n){
//说明没有这个玩意
printf("-1\n");
}
}
遇到多个数据的时候最好的方式是排序+二分查找哦
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-SssNUojp-1678635540242)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230312204949484.png)]
容易出现的问题是
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-n4u1q1No-1678635540242)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230312205154151.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-f13bdNmY-1678635540242)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230312231325674.png)]
在C++中,
std::map
是一种关联式容器,它将键映射到值。我们可以使用map
中的find
方法来查找容器中是否存在某个指定的键。find
函数的具体作用为:在map
中查找键值等于指定键值的元素,如果能够找到,则返回指向该元素的迭代器;如果查找失败,则返回指向容器尾部的迭代器。函数的形式为:
c++ iterator map::find(const key_type& key); const_iterator map::find(const key_type& key) const;
其中,key
为要查找的键值,如果map
中存在该键,则返回指向该元素的迭代器;否则返回指向容器尾部的迭代器。下面是一个使用
std::map::find
函数的例子:
c++ #include
#include 在这个例子中,我们定义了一个
std::map
对象m
,它将学生的姓名映射到他们的成绩。我们首先向m
中添加了三个元素,然后使用find
函数查找m
中是否存在某个指定的键。第一个查找"Alice"
,由于这个键存在于m
中,因此find
函数返回指向该元素的迭代器,并输出对应的成绩。第二个查找"David"
,由于这个键不存在于m
中,因此find
函数返回指向容器尾部的迭代器,并输出一个提示信息。
find()常常会和end()配合使用
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-sdGl6wcI-1678635540242)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230312233708280.png)]
#include
#include
先进先出
c++库中已经依据队列的逻辑结构给予了相应的实现方法
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-uqYRvq6E-1678814571378)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230314175732696.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-wIrBLofF-1678814571379)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230314175944438.png)]
如何模拟循环队列的效果:
先出再入
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-fbQQnk9z-1678814571379)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230314190414080.png)]
#include
#include
using namespace std;
int main(){
int n,p,m;
while (true){
scanf("%d%d%d\n",&n,&p,&m);
//输入000出去
if(n==0&&p==0&&m==0) {
break;
}
/*这时候n表示有n个小孩,队头应该是编号p的小孩子
* m表示报数奥m的时候队头小孩子出队*/
//依次入队,队友为p
queue Children;
for (int i = p,j=0; j < n; ++j){
//p--n--1--
Children.push(i);
if(i==n){
i=0;
}
i++;
}
//出循环说明队列已经初始化完成
//这时候开始依次出队
int i=0;
while(true){
//当不明确什么时候完成时定为无线循环,到点了break
//出队
i++;
int k=Children.front();//保持头部元素
Children.pop();//出队
if(i!=m){
//说明没到,再放入
Children.push(k);
}
if(i==m){
//说明到了,这时候输出其编号
i=0;
printf("%d,",k);
}
//如果只有一个元素了直接输出
if(Children.size()==1){
printf("%d",Children.front());
break;
}
}
}
}
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Q6TAHX7K-1678814571380)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230314200148645.png)]
#include
#include
using namespace std;
struct Animal{
int num;//编号
int queue;//表示进入队列的顺序,因为队列的先后动作关乎于第一种收养方式
};
int main(){
//处理输入数据
int n;
scanf("%d",&n);
int m,t;
queue DogQue;
queue CatQue;
int queue=1;
for (int i = 0; i < n; ++i){
scanf("%d%d",&m,&t);//m表示是送动物进入/收养,t表示的是动物编号
if(m==1){
//这种情况说说明是要送入收养
if(t<0){
//送猫
Animal cat;
cat.queue=queue++;
cat.num=t;
CatQue.push(cat);
} else if(t>0){
//送狗
Animal dog;
dog.queue=queue++;
dog.num=t;
DogQue.push(dog);
} else{
continue;//直接进入下一次循环
}
}
else if(m==2){
//说明是要收养
if(t==1){
/*指定收养狗*/
if(!DogQue.empty()){
Animal g=DogQue.front();//队头元素
DogQue.pop();//不为空
printf("%d ",g.num);//输出其编号
} else{
continue;
}
}
else if(t==-1){
//收养猫
if(!CatQue.empty()){
Animal g=CatQue.front();//队头元素
CatQue.pop();//不为空
printf("%d ",g.num);//输出其编号
} else{//说明空了
continue;
}
}
else if(t==0){
//收养最早进入队列元素
//收养狗的情况
if(CatQue.empty()&&!DogQue.empty()||
(!CatQue.empty()&&!DogQue.empty()&&CatQue.front().queue>DogQue.front().num)){
printf("%d ",DogQue.front().num);
DogQue.pop();
} else if(CatQue.empty()&&DogQue.empty()){
continue;
} else{
//剩下的情况:猫不为空,狗空;猫狗不空但是猫编号小
printf("%d ",CatQue.front().num);
CatQue.pop();
}
}
}
}
}
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-AvMeK1HO-1678814571380)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230314231006866.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-98Cl1GTf-1678814571380)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230314231450870.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-8w1COHeN-1678814571380)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230314232613751.png)]
//反转数字输出
#include
#include
using namespace std;
int main(){
//数字范围很大故要用longlong型存储
long long num;
int n;//输入数字
scanf("%d",&n);
stackstack;
for (int i = 0; i < n; ++i){
scanf("%lld",&num);
stack.push(num);
}
//然后再出栈输出
while(!stack.empty()){
printf("%lld ",stack.top());
stack.pop();
}
printf("\n");
}
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-0mHXzAsV-1678814571381)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230315001034874.png)]
#include
#include
#include
using namespace std;
int main(){
char str[200];//等待输入的字符
string string1;
while(fgets(str,199,stdin)!=NULL){
//读取一个词语-scanf+%s
//若是要读一行字用fgets配合上while可以实现不确定行数的多行输入
string1=str;//转化为c++风格的字符串
string1.pop_back();//去掉结尾的\n,因为fgets会读取多余的换行符
stack<unsigned > index;//存放下标
string string2;//存放结果字符串
for (int i = 0; i < string1.size(); ++i) {
if(string1[i]=='('){
index.push(i);
string2.push_back('$');//假装是匹配的知道遇到右括号
} else if(string1[i]==')'){
//第一种情况:栈中为空这时候无匹配项了
if(index.empty()){
string2.push_back('?');
} else{
//说明有左括号哦
string2.push_back(' ');
int k=index.top();
string2[k]=' ';
index.pop();
}
}else{
//其他字符直接当空格放入就行
string2.push_back(' ');
}
}
//这时候输出就好了
printf("%s\n%s",string1.c_str(),string2.c_str());
}
}
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-YjWFEoWz-1678814571381)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230315012038618.png)]
#include
#include
#include
#include
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-F0OZ9wHG-1678814571381)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230315002248526.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-lP12lOZu-1678814571382)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230315002512582.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Xu2kmjHf-1678814571382)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230314233458670.png)]、
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-2X7PBx7I-1678881535184)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230315150025181.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-TvasZxeK-1678881535185)(D:\刷题图片\image-20230315150500425.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-c4MGtlgT-1678881535185)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230315150542624.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-42iZpAjy-1678881535186)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230315151156157.png)]
金典理解方面的错误:并不是进入main函数操作系统才申请栈区的哦
在进入
main
函数之前,程序会首先进行一些初始化操作,包括分配栈区等操作。具体来说,当操作系统启动一个进程时,会为这个进程分配一些虚拟内存空间,其中一部分用于存储栈区。 在进入main
函数之前,操作系统会把一部分虚拟内存空间分配给栈区,然后在进入main
函数时,程序会在这段栈区中为main
函数的局部变量、参数等分配空间。当main
函数结束时,程序会释放main
函数所分配的栈空间,然后退出进程,操作系统会收回这些虚拟内存空间。 所以可以说,在进入main
函数之前,程序已经分配了栈区,但这并不代表这个栈区一定很大,栈区的大小取决于操作系统的分配策略和硬件资源的限制。所以一直递归不出栈才会导致爆栈
第二点:栈区申请具体流程
在程序运行时,栈区是在进入函数时动态开辟的,也就是说,当函数被调用时,栈会自动分配一段地址空间,并且会在函数调用结束时释放。 栈区的大小是由操作系统根据需要来动态分配的,而不是由程序员手动定义的。当进程启动时,操作系统会为进程分配一定大小的栈空间。当函数调用时,程序将栈指针向下移动,以为当前调用函数预留一定大小的栈空间,栈大小的限制取决于操作系统对栈区的分配策略和硬件资源的限制。 在C语言中,栈的大小是可以通过修改编译器或链接器的设置来改变的,但是这样做并不是一个好的选择,并且一般来说,程序员也不需要手动去管理栈的大小。另外,如果在函数中定义了过多的局部变量、数组等数据,可能会导致栈区溢出,从而导致程序崩溃。
第三点:如何避免爆栈
要避免栈溢出(stack overflow),可以采取以下措施:
减少局部变量和递归调用的深度:在函数中声明的局部变量以及递归调用的深度都会占用栈空间,如果变量和调用层数过多,就容易导致栈溢出。
使用动态分配的内存:可以通过使用动态分配的内存(如
malloc
、calloc
等)来减少栈的使用量。动态分配的内存存放在堆区,不会影响栈空间的大小。增加栈空间的大小:可以通过修改编译器或链接器的设置来增加栈空间的大小,但是这种方法并不推荐,因为栈空间的大小是受到硬件资源限制的。
使用尾递归:尾递归是指函数调用自身,并且这个函数调用是出现在所返回的值上,而不是出现在表达式的中间。使用尾递归可以避免递归调用的深度过大,从而减少栈空间的使用量。
编写代码时,注意检查边界条件:例如,当使用数组或指针时,一定要确保不会访问到超出数组或指针范围的内存。这样即使出现了错误也不会导致栈溢出。 需要注意的是,栈溢出是一种非常危险的情况,可能会导致程序崩溃或者出现未定义的行为。因此,在编写代码时一定要格外小心,避免出现栈溢出的情况。
递归推导的基本方法是找到一个递推公式或者递归式来表示原问题,然后通过对公式或者式子的分析,得到问题的解。 具体的技巧包括:
- 找出递推公式或递归式,确定递归边界。对于递归问题,首先要确定递归关系,即原问题和子问题之间的关系。在找到递归关系之后,需要确定边界条件,即最小和最简单的问题的解,也就是递归问题的停止条件。
- 简化递归问题。对于复杂的递归问题,可以通过简化问题,缩小问题规模的方式来减少问题的复杂度,使得问题更易于处理。例如,可以考虑将原问题分解为若干个子问题,然后递归地解决这些子问题,最后合并子问题的结果得到原问题的解。
- 求解递归问题。在确定了递归关系和边界条件之后,就可以递归地求解问题了。在每一次递归调用中,首先需要判断是否满足递归边界,如果满足,则返回边界条件对应的结果;否则,继续递归解决子问题,并将子问题的结果合并,得到当前问题的解。
- 验证和优化递归算法。验证递归算法的正确性和优化递归算法的效率也是很重要的技巧。在验证递归算法时,可以使用数学归纳法或者反证法等方法。在优化递归算法时,可以考虑使用记忆化搜索或者动态规划等技术。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-nfHjAne3-1678881535186)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230315152618230.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-tmqS8w2f-1678881535187)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230315160501949.png)]
#include
using namespace std;
int func(int i){
if(i==1){
return 1;
}
return i *func(i-1);
}
int main(){
//求n的阶乘
int n;
scanf("%d",&n);
printf("%d", func(n));
}
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Nx3YSWTP-1678881535187)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230315160531961.png)]
\
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-IhgN4yr4-1678881535187)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230315162643525.png)]
//递归金典问题:汉诺塔问题
#include
using namespace std;
//指数级增长用longlong
int Hanuo(long long i){
//1.推导的是n和n-1的关系-》3*hanuo(n-1)+2
//2.算出口即n=1的时候——》2
if(i==1){
return 2;
}
else{
return 3*Hanuo(i-1)+2;
}
}
int main(){
int N;
while(scanf("%d",&N)!=EOF){
printf("%lld", Hanuo(N));
printf("\n");
}
}
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ibxxSLG3-1678881535188)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230315163107236.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-m07Su8BL-1678881535188)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230315180947444.png)]
分而治之(Divide and Conquer)是一种将大问题分解成若干个小问题来解决的问题求解策略。
它通常包括三个步骤:分解问题、解决问题、合并问题的解。
在分解问题时,将问题分解为若干个规模较小、结构与原问题相似的子问题,然后对这些子问题进行递归求解。在解决问题时,利用递归求解子问题得到子问题的解。在合并问题的解时,将子问题的解合并为原问题的解。 而递归(Recursion)是一种在函数定义中使用函数自身的方法。当函数调用自身时,就形成了递归调用。
从分而治之到递归的过程主要体现在解决问题的步骤上。在分而治之中,利用递归求解子问题得到子问题的解后,需要将子问题的解合并为原问题的解。在这个过程中,往往需要编写额外的代码来实现合并。而在递归中,自然而然地得到了子问题的解,避免了额外的合并操作。
例如,对于快速排序算法,它是一种基于分而治之策略的排序算法。在分解问题时,将待排序序列分成两个子序列,然后分别递归地对子序列进行排序。在解决问题时,通过递归排序子序列得到子序列的有序序列,然后通过合并两个有序序列得到原问题的有序序列。而在递归中,每个子序列的有序性质都可以自然地得到,不需要额外的合并操作,使得算法更加简洁高效。 因此,从分而治之到递归的过程,是从手动实现合并操作到利用递归自然地得到子问题的解,使得算法更加简洁高效的过程。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Gp7gjmR5-1678881535189)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230315182058835.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-FjaPEp0d-1678881535189)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230315182412462.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ukR6LbxO-1678881535189)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230315182502250.png)]
#include
int Func(int i){
if(i==1){
return 1;
} else if(i==0){
return 0;
} else{
return Func(i-1)+ Func(i-2);
}
}
int main(){
int n;
scanf("%d",&n);
printf("%d", Func(n));
}
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-4oNJglFA-1678881535190)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230315194233641.png)]
首先,我们可以利用递归求解二叉树的节点总数。具体来说,我们可以定义一个函数
getNodeNum
,它的输入是一个二叉树的根节点root,输出是该二叉树的节点总数。该函数的实现步骤如下: 1. 若root为空,返回0。 2. 否则,递归计算root节点的左子树和右子树的节点总数,再加上1(因为root节点也算一个节点),得到该二叉树的节点总数。 3. 返回上一层调用栈,将左右子树的节点总数相加,得到上一层的节点总数,并最终返回根节点的节点总数。其次,我们可以在后序遍历的过程中,对每个节点计算其子树的节点总数,并记录每个节点子树的节点总数是否等于给定的数m。具体来说,我们可以定义一个函数
getSubtreeWithNodeNum
,它的输入是一个二叉树的根节点root、一个整数m和一个vector res,输出是所有节点子树的节点总数等于m的节点。该函数的实现步骤如下: 1. 若root为空,直接返回。 2. 否则,先递归遍历左子树和右子树。 3. 再计算当前节点root的左子树和右子树的节点总数leftNum
和rightNum
,再加上1,得到以root为根节点的子树的节点总数totalNum
。 4. 若totalNum
等于m,将root加入结果集res中。 5. 返回上一层调用栈。 最后,我们可以调用函数getSubtreeWithNodeNum
,得到所有节点数为m的子树的根节点。
#include
using namespace std;
//确定完全二叉树怎么算
int getNodeNum(int m,int n){
//求的是结点编号为m的子树的结点总数
if(m>n){
return 0;
} else{
return 1+ getNodeNum(2*m,n)+ getNodeNum(2*m+1,n);
}
}
int main(){
//输入
int m,n;
while(scanf("%d%d",&m,&n)!=EOF){
if(m==0&&n==0){
break;
} else{
printf("%d\n", getNodeNum(m,n));
}
}
}
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-B813wHbQ-1679073096802)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230316195951626.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-kLNVs7mY-1679073096804)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230316200346003.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-9qT0UB5Z-1679073096804)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230316200831870.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-A1aquzVE-1679073096805)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230316201059619.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-o1IZgXuw-1679073096805)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230316201222908.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-NVU2uzM8-1679073096805)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230316201428478.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-KkuA6Gtr-1679073096806)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230316201728622.png)]
堆空间并不会因为退出函数体就销毁哦[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-R8oIUQKy-1679073096806)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230316201835572.png)]
#include
#include
using namespace std;
//树结点定义
struct TreeNode{
char val;
TreeNode* left;
TreeNode* right;
};
//辅助队列结点定义
struct QueueNode{
TreeNode* parent;//指向其二叉树结点
bool isLeft;//有无左子树
};
//插入方法
void InsertNode(TreeNode* &root,queue &myQueue,char data){
if(data!='#'){
//第一种情况,data不为空,创新节点放入
TreeNode* treeNode=new TreeNode;
treeNode->val=data;
QueueNode* queueNode=new QueueNode;//队列结点
queueNode->parent=treeNode;
queueNode->isLeft= false;
myQueue.push(queueNode);//入队
if(root==NULL){
//说明是第一个结点
root=treeNode;
}else{
//不是第一个结点找他的父节点
QueueNode* Pparent=myQueue.front();
//看看放在哪
if(Pparent->isLeft== false){
//放左边
Pparent->parent->left=treeNode;
Pparent->isLeft=true;
}else{
Pparent->parent->right=treeNode;//放满了可以出队列了
myQueue.pop();
delete Pparent;
}
}
}
else{
//说明是空的也就是插入结点为null
if(root!=NULL){
//如果空为空树直接不管
QueueNode* Pparent=myQueue.front();
if(Pparent->isLeft== false){
//左边没有zhikong
Pparent->parent->left=NULL;
Pparent->isLeft=true;
}else{
//左字数有了右子树置为空
Pparent->parent->right=NULL;
myQueue.pop();
delete Pparent;
}
}
}
}
int main(){
TreeNode* root=NULL;//一定要记得给个NULL错了n次就是因为忘记初始化
queue myQueue;
char Charlist[]="abc##de#g##f###";
for (int i = 0; Charlist[i]!='\0'; ++i) {
InsertNode(root,myQueue,Charlist[i]);
}
LevelOrder(root);
}
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-OJLeu0bS-1679073096806)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230316213546353.png)]
//层次遍历
void LevelOrder(TreeNode* root){
queue myQueue;
myQueue.push(root);
while(!myQueue.empty()){
TreeNode* tmp=myQueue.front();
printf("%c ",tmp->val);
//出去+有左放左有右放右
myQueue.pop();
if(tmp->left!=NULL){
myQueue.push(tmp->left);
}
if(tmp->right!=NULL){
myQueue.push(tmp->right);
}
}
}
//前序遍历
void preOrder(TreeNode* root){
if(root==NULL){
return;
}
printf("%c ",root->val);
preOrder(root->left);
preOrder(root->right);
}
//中序遍历
void inOrder(TreeNode* root){
if(root==NULL){
return;
}
inOrder(root->left);
printf("%c ",root->val);
inOrder(root->right);
}
//后序遍历
void postOrder(TreeNode* root){
if(root==NULL){
return;
}
postOrder(root->left);
postOrder(root->right);
printf("%c ",root->val);
}
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-vIM8DKcM-1679073096807)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230317012817881.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-mh9c2vG8-1679073096807)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230317013132699.png)]
//根据前序和中序重建二叉树
#include
#include
using namespace std;
struct TreeNode{
char val;
TreeNode* lChild;
TreeNode* rChild;
};
TreeNode* ReBuild(string preorder,string inorder){
if(preorder.size()==0||inorder.size()==0){
return NULL;
} else{
//找到根节点值
TreeNode* root=new TreeNode;
char posval=preorder[0];
root->val=posval;
//从中序查到该点下标
int pos=inorder.find(posval);
//分割结点由大化小,前序切割成小前序
root->lChild= ReBuild(preorder.substr(1,pos),inorder.substr(0,pos));
root->rChild= ReBuild(preorder.substr(pos+1),inorder.substr(pos+1));
return root;
}
}
//后序遍历
void postOrder(TreeNode* root){
if(root==NULL){
return;
}
postOrder(root->lChild);
postOrder(root->rChild);
printf("%c ",root->val);
}
int main(){
char preorder[30];
char inorder[30];
while (scanf("%s%s",preorder,inorder)!=EOF){
TreeNode* root;
root=ReBuild(preorder,inorder);
postOrder(root);
}
}
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-AqEnPibB-1679073096808)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230317142657119.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-AwK2cxvJ-1679073096808)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230317142924022.png)]
#include
#include
using namespace std;
struct TreeNode{
char val;
TreeNode* LChild;
TreeNode* RChild;
};
TreeNode* RecursiveBuildTree(string str,int& i){
char value=str[i];
i++;
//找根结点
if(value=='#'){
return NULL;
}
else{
TreeNode* treeNode=new TreeNode;
treeNode->val=value;
treeNode->LChild= RecursiveBuildTree(str,i);
treeNode->RChild= RecursiveBuildTree(str,i);
return treeNode;
}
}
void InOrder(TreeNode* root){
if(root==NULL){
return;
}
InOrder(root->LChild);
printf("%c ",root->val);
InOrder(root->RChild);
}
int main(){
/* string str="ab##cd#gf###e##";*/
char str[3000];
while(scanf("%s",str)!=EOF) {
int i = 0;//起始下标
TreeNode *root = RecursiveBuildTree(str, i);
InOrder(root);
printf("\n");
}
}
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-RPJ7AlMl-1679073096808)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230317151059692.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-jFUvQZWL-1679073096809)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230317151352311.png)]
//二叉搜索树插入的实现
#include
using namespace std;
struct TreeNode{
int val;
TreeNode* LChild;
TreeNode* RChild;
};
void BuildTree(TreeNode* &root,int data){
TreeNode* treeNode=new TreeNode;
treeNode->val=data;
treeNode->LChild=NULL;
treeNode->RChild=NULL;
if(root==NULL){
root=treeNode;
} else{
TreeNode* pPre=root;
TreeNode* cur;
while (true){
if(dataval){
//走左边
cur=pPre->LChild;//查左边结点
if(cur==NULL){
pPre->LChild=treeNode;
break;
} else{
//说明有继续走,及定位在cur
pPre=cur;
}
}
else{
cur=pPre->RChild;
if(cur==NULL){
//说明插入此处
pPre->RChild=treeNode;
break;
}else{
//说明有继续找
pPre=cur;
}
}
}
}
}
int main(){
TreeNode* root=NULL;
int array[]={2,3,5,1,4};
for (int i = 0; i < 5; ++i) {
BuildTree(root,array[i]);
}
}
相关习题
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-WTLsC98w-1679073096809)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230317161416205.png)]
//二叉搜索树插入的实现
#include
using namespace std;
struct TreeNode{
int val;
TreeNode* LChild;
TreeNode* RChild;
};
void BuildTree(TreeNode* &root,int data){
TreeNode* treeNode=new TreeNode;
treeNode->val=data;
treeNode->LChild=NULL;
treeNode->RChild=NULL;
if(root==NULL){
root=treeNode;
printf("-1\n");
} else{
TreeNode* pPre=root;
TreeNode* cur;
while (true){
if(dataval){
//走左边
cur=pPre->LChild;//查左边结点
if(cur==NULL){
pPre->LChild=treeNode;
printf("%d\n",pPre->val);
break;
} else{
//说明有继续走,及定位在cur
pPre=cur;
}
}
else{
cur=pPre->RChild;
if(cur==NULL){
//说明插入此处
pPre->RChild=treeNode;
printf("%d\n",pPre->val);
break;
}else{
//说明有继续找
pPre=cur;
}
}
}
}
}
int main(){
TreeNode* root=NULL;
int n;
scanf("%d",&n);
int m;
for (int i = 0; i < n; ++i) {
scanf("%d",&m);
BuildTree(root,m);
}
}
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-y6ngRxlQ-1679073096809)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230317173607252.png)]
#include
#include
using namespace std;
struct TreeNode{
char data;
TreeNode* lChild;
TreeNode* rChild;
};
//建立一个二叉搜索树函数
void InsertBuild(TreeNode*& root,char data){
TreeNode* treeNode=new TreeNode;
treeNode->data=data;
treeNode->rChild=NULL;
treeNode->lChild=NULL;
if(root==NULL){
root=treeNode;
}
else{
TreeNode* pPre=root;
TreeNode* cur;
while(true){
if(datadata){
//左边
cur=pPre->lChild;
if(cur==NULL){
pPre->lChild=treeNode;
break;
} else{
//说明有
pPre=cur;
}
}else{
//大于的情况走右边
cur=pPre->rChild;
if(cur==NULL){
pPre->rChild=treeNode;
break;
} else{
pPre=cur;
}
}
}
}
}
string InOrder(TreeNode* root){
if(root==NULL){
return " ";
}
return InOrder(root->lChild)+root->data+ InOrder(root->rChild);
}
string PreOrder(TreeNode *root){
if(root==NULL){
return " ";
}
return root->data+ PreOrder(root->lChild)+ PreOrder(root->rChild);
}
int main(){
int n;
while(scanf("%d",&n)!=EOF){
if(n==0){
break;
}
char str1[100];
scanf("%s",str1);
TreeNode* root=NULL;
for (int i = 0; str1[i]!='\0'; ++i) {
InsertBuild(root, str1[i]);
}
string preorder1= PreOrder(root);
string inorder1= InOrder(root);
/* printf("%s %s",preorder1.c_str(),inorder1.c_str());*/
char str2[100];
for (int i = 0; i < n; ++i) {
scanf("%s",str2);
TreeNode* root2=NULL;
for (int j = 0; str2[j] !='\0' ; ++j) {
InsertBuild(root2,str2[j]);
}
string preorder2= PreOrder(root2);
string inorder2= InOrder(root2);
if(preorder1==preorder2&&inorder2==inorder1){
printf("YES\n");
}else{
printf("NO\n");
}
}
}
}
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-iDYKf4fr-1679073096810)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230317175127268.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-WzpTUH7V-1679073096810)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230317175600063.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-1iQ8uKwe-1679073096810)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230317185111012.png)]
#include
#include
#include
using namespace std;
//定义复数的结构体
struct complex{
int real;
int image;
};
//运算符重载
//交换就返回true
bool operator <(complex a,complex b){
return a.real*a.real+a.image*a.image queue;
for (int i = 0; i < n; ++i) {
char arr[100];
scanf("%s",arr);
string string1=arr;
if(string1=="Pop"){
if(queue.empty()){
printf("empty\n");
}else
{
printf("%d+i%d\n",queue.top().real,queue.top().image);
queue.pop();
printf("SIZE=%d\n",queue.size());
}
}else if(string1=="Insert"){
int m,n;
scanf("%d+i%d",&m,&n);
complex tmp;
tmp.image=n;
tmp.real=m;
queue.push(tmp);
printf("SIZE=%d\n",queue.size());
}
}
}
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-41FDCzgk-1679073096810)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230317185835751.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-FKFtorqq-1679073096811)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230317190441992.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-RHWAoNe0-1679073096811)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230317192613709.png)]
#include
#include
using namespace std;
int main(){
priority_queue queue;
int n;
scanf("%d",&n);
for (int i = 0; i < n; ++i) {
int weight;
scanf("%d",&weight);
//用负数来模拟小根堆效果
queue.push(-weight);
}
//放完了开始算权值
int res=0;
while(queue.size()>1){
int weight1=queue.top();
queue.pop();
int weight2=queue.top();
queue.pop();
//计算带权路径和
res=res+weight1+weight2;
queue.push(weight1+weight2);
}
printf("%d",-res);
}
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-vW7slhrg-1679073096811)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230317202716819.png)]
#include
#include
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-cPQCIdRe-1679073096811)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230318010831971.png)]
#include
#include
#include
using namespace std;
int main(){
map<string,string> map;
while(true){
char list[300];
fgets(list,299,stdin);
string str=list;
str.pop_back();//去掉换行符
if(str=="@END@"){
break;
}
//读入map
int pos=str.find(']');
string word=str.substr(0,pos+1);
string info=str.substr(pos+2);
map[word]=info;
map[info]=word;
}
int n;
scanf("%d",&n);
getchar();//因为题目中4后面跟了换行符
for (int i = 0; i < n; ++i) {
char line[200];
fgets(line,199,stdin);
string linestr=line;
linestr.pop_back();
if(map.find(linestr)!=map.end()){
//说明找到了
//看看是根据什么找什么
if(linestr[0]=='['){
//根据魔咒找功能
printf("%s\n",map[linestr].c_str());
} else{
//根据功能找魔咒,魔咒要去掉左右中括号
printf("%s\n", map[linestr].substr(1,linestr.size()-2).c_str());
}
}else
{//没找到
printf("what\n");
}
}
}
广度优先搜索是一种基础的图搜索算法,它可以用来解决许多问题,其中最常见的是以下几种: 1. 无权图最短路径问题:在无权图中,从起点到终点的最短路径是什么。 2. 迷宫问题:在一个由通道和墙壁组成的迷宫中,找出从起点到终点的路径。 3. 连通性问题:在一个图中,确定两个节点之间是否存在路径。 4. 可达性问题:在一个图中,确定某个节点是否可以通过另一个节点到达。 5. 遍历问题:在一个图中,访问所有节点。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ItZBXjOA-1679156076260)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230318103834485.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-VuKBe1YO-1679156076262)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230318104704404.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-DlogXpJ4-1679156076262)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230318111852173.png)]
#include
#include
using namespace std;
struct info{
int pos;
int time;
};
int main(){
int n,k;
scanf("%d%d",&n,&k);
queue myQueue;
bool isVisit[100001];
for (int i = 0; i < 100001; ++i) {
isVisit[i]= false;
}
info first;
first.pos=n;
first.time=0;
myQueue.push(first);
while(myQueue.empty()!= true){
info cur=myQueue.front();
myQueue.pop();
if(cur.pos==k){
printf("%d",cur.time);
break;
}
isVisit[cur.pos]=true;
//加入邻居
info neighber;
if(cur.pos-1>0&&cur.pos-1<10000&& isVisit[cur.pos-1]== false){
neighber.pos=cur.pos-1;
neighber.time=cur.time+1;
myQueue.push(neighber);
}
if(cur.pos+1>0&&cur.pos+1<10000&& isVisit[cur.pos+1]== false){
neighber.pos=cur.pos+1;
neighber.time=cur.time+1;
myQueue.push(neighber);
}
if(cur.pos*2>0&&cur.pos*2<10000&& isVisit[cur.pos*2]== false){
neighber.pos=cur.pos*2;
neighber.time=cur.time+1;
myQueue.push(neighber);
}
}
}
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-jbrJn3Bb-1679156076263)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230318114437270.png)]
#include
#include
using namespace std;
int main(){
//广度优先搜索
int n;
while(true){
scanf("%d",&n);
if(n==0){
break;
}
queuemyQueue;
myQueue.push(1);
while(myQueue.empty()== false){
long long cur=myQueue.front();
myQueue.pop();
if(cur%n==0){
printf("%lld\n",cur);
break;
}
myQueue.push(cur*10);
myQueue.push(cur*10+1);
}
}
}
然后发现超时了,答案是对的这种情况下使用打表
#include
#include
using namespace std;
int main(){
//广度优先搜索
int n=1;
while(true){
if(n==201)
break;
queuemyQueue;
myQueue.push(1);
while(myQueue.empty()== false){
long long cur=myQueue.front();
myQueue.pop();
if (cur % n == 0) {
printf("%lld,", cur);
break;
}
myQueue.push(cur*10);
myQueue.push(cur*10+1);
}
n++;
}
printf("\n");
}
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-8eWxZfZb-1679156076263)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230318115549813.png)]
输出的数字即从1到200所有的情况
int main(){
long long arr[201]={0,1,10,111,100,10,1110,1001,1000,111111111,10,11,11100,1001,10010,1110,10000,11101,1111111110,11001,100,10101,110,110101,111000,100,10010,1101111111,100100,1101101,1110,111011,100000,111111,111010,10010,11111111100,111,110010,10101,1000,11111,101010,1101101,1100,1111111110,1101010,10011,1110000,1100001,100,100011,100100,100011,11011111110,110,1001000,11001,11011010,11011111,11100,100101,1110110,1111011111,1000000,10010,1111110,1101011,1110100,10000101,10010,10011,111111111000,10001,1110,11100,1100100,1001,101010,10010011,10000,1111111101,111110,101011,1010100,111010,11011010,11010111,11000,11010101,1111111110,1001,11010100,10000011,100110,110010,11100000,11100001,11000010,111111111111111111,100,101,1000110,11100001,1001000,101010,1000110,100010011,110111111100,1001010111,110,111,10010000,1011011,110010,1101010,110110100,10101111111,11111100,11101111,11010110,11011111110,11101000,10001,100001010,110110101,100100,10011,100110,1001,1111111110000,11011010,100010,1100001,11100,110111,11100,1110001,11001000,10111110111,10010,1110110,1010100,10101101011,100100110,100011,100000,11101111,11111111010,1010111,1111100,1111110,1010110,11111011,10101000,10111101,111010,1111011111,110110100,1011001101,110101110,100100,110000,100101111,110101010,11010111,11111111100,1001111,10010,100101,110101000,1110,100000110,1001011,1001100,1010111010111,110010,11101111,111000000,11001,111000010,101010,110000100,1101000101,1111111111111111110,111000011,1000};
int n;
while (true){
scanf("%d",&n);
if(n==0){
break;
} else{
printf("%lld\n",arr[n]);
}
}
}
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-hTxhry2t-1679156076264)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230318124239785.png)]
深度优先遍历(Depth-First Search,简称DFS)是一种常见的遍历图或树的算法。其运用了“回溯法”思想,在搜索过程中尽量先访问子节点,然后再返回到父节点,沿着一条分支一直走到底,直到不能再走为止,然后返回上一个分支继续搜索,直到遍历完整个图或树为止。 深度优先遍历可以使用递归或者栈来实现。递归实现时,每次访问到一个节点,就将其标记为已访问,然后递归遍历其所有未被访问过的邻居节点,直到遍历完所有的连通节点。使用栈实现时,首先把起始节点压入栈中,然后不断弹出栈顶节点,访问该节点并将其未被访问过的邻居节点压入栈中,直到栈为空为止。 深度优先遍历的应用非常广泛,例如最短路径问题、拓扑排序、判断图是否为连通图等问题都可以用深度优先遍历来解决。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-pALeSX5P-1679156076264)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230318142340039.png)]
#include
#include
using namespace std;
//可以走的方向
int direction[50][50]={
{-1,-2},{1,-2},{-2,-1},{2,-1},{-2,1},{2,1},{-1,2},{1,2}
};
bool Isvisited[50][50];
bool DFS(int x,int y,int cur,int p,int q,string path){
path+=(y+'A');
path+=(x+'1');
Isvisited[x][y]=true;
if(cur==p*q){
return true;
}
for (int i = 0; i < 8; ++i) {
if(x+direction[i][0]>=0&&x+direction[i][0]=0&&y+direction[i][1]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-VuwidS1H-1679156076264)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230318145708974.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-B97Kc1pK-1679156076265)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230318145723673.png)]
#include
using namespace std;
int m;
int stick[30];
bool issue[30];
bool DFS(int curSide,int curLength,int position,int side){
//当前已经拼好的边的个数,当前边长度,木棍遍历期待你,边要的长度
if(curSide==3){
return true;
}
for (int i = position; i side){
continue;
}
issue[i]= true;
if(curLength+stick[i]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-4WIat7EO-1679156076265)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230318150135500.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-qZY1G34A-1679156076266)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230318150222523.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-hSFCcc91-1679156076266)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230318150406748.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-nNQk9K0e-1679156076266)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230318150748105.png)]
#include
#include
#define N 1000
using namespace std;
struct Edge{
int y;//这条边对端的编号
int weight;//这条边的权重
};
vector graph[N];//维持了一个长度为n的数组,数组的每一个元素都保存了某个顶点的所有关联边
//insert edge x,y,weight
void addEdge(int x,int y,int weight){
Edge edge;
edge.y=y;
edge.weight=weight;
graph[x].push_back(edge);
}
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Pau9potX-1679156076267)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230318155012750.png)]
#include
using namespace std;
#define N 1000 //元素上限个数
int father[N];//存储了每一个元素的父亲的下标
//初始化
void Init(int n){
//最开始的时候每个元素的父亲都是自己
for(int i=0;i
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-cc4pfULT-1679156076267)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230318155936118.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-fitqodm0-1679156076267)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230318160000533.png)]
//查找的路径压缩
int Findup(int x){
if(x!=father[x]){
//递归向上查找的同时,找到祖先之后先不返回,而是设置自己的新父亲
father[x]= Findup(father[x]);
}
return father[x];
}
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-NHDxXl9P-1679156076268)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230318161458446.png)]
#include
using namespace std;
#define N 1000 //元素上限个数
int father[N];//存储了每一个元素的父亲的下标
int height[N];//记录父亲结点到子节点的高度
//初始化
void Init(int n){
//最开始的时候每个元素的父亲都是自己
for(int i=0;iheight[x]){
father[y]=x;
}else{
//同等高度下合并就无所谓了单数要注意的是合并过去高度要+1
father[y]=x;
++height[x];
}
}
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-y7wWhPQN-1679156076268)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230318164115982.png)]
#include
using namespace std;
#define N 1000 //元素上限个数
int father[N];//存储了每一个元素的父亲的下标
int height[N];//记录父亲结点到子节点的高度
//初始化
void Init(int n){
//最开始的时候每个元素的父亲都是自己
for(int i=1;iheight[x]){
father[y]=x;
}else{
//同等高度下合并就无所谓了单数要注意的是合并过去高度要+1
father[y]=x;
++height[x];
}
}
int main(){
int n,m;
while (scanf("%d%d",&n,&m)!=EOF){
if(n==0&&m==0){
break;
}
Init(n);//初始化有n个顶点的并查集
//输入m行数据
int num=n;//初始条件下连通子图的数量
for (int i = 0; i < m; ++i) {
int x,y;
scanf("%d%d",&x,&y);
UnionUp(x,y,num);
}
if(num==1){
printf("YES\n");
} else{
printf("NO\n");
}
}
}
最小生成树是一个连通无向图的生成树,它的所有边的权值和最小。
生成树是一个无向树,它包含图中的所有顶点,但只有足以构成一棵树的边。
如果一个图本身就是一棵树,则该图的最小生成树就是它本身。
在给定一个带权的连通无向图后,最小生成树问题就是要找到权值和最小的生成树。
最小生成树问题是一种经典的、重要的问题,在许多实际问题的求解中都有应用,例如城市道路规划、电路设计、计算机网络等。 最小生成树问题有很多解法,其中比较常用的是Prim算法和Kruskal算法。
Prim算法是一种贪心算法,以某个顶点为起点,不断扩展已有的生成树,加入一个顶点,就将离它最近的边加入生成树,直到所有顶点都加入为止。
Kruskal算法则是一种基于并查集的贪心算法,首先将所有的边从小到大排序,然后从最小的边开始加入生成树,如果边的两个端点已经在同一个连通分量中,则不加入该边;否则将该边加入生成树,并将两个端点合并到同一个连通分量中。两种算法都能够得到最小生成树。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ozNHMgtb-1679156076268)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230318170329848.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-bWTHbn1r-1679156076268)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230318170314977.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-g3M0XpXf-1679156076269)(C:\Users\达芬奇\AppData\Roaming\Typora\typora-user-images\image-20230318173136281.png)]
/*
#include
using namespace std;
#define N 1000 //元素上限个数
int father[N];//存储了每一个元素的父亲的下标
int height[N];//记录父亲结点到子节点的高度
//初始化
void Init(int n){
//最开始的时候每个元素的父亲都是自己
for(int i=1;iheight[x]){
father[y]=x;
}else{
//同等高度下合并就无所谓了单数要注意的是合并过去高度要+1
father[y]=x;
++height[x];
}
}
int main(){
int n,m;
while (scanf("%d%d",&n,&m)!=EOF){
if(n==0&&m==0){
break;
}
Init(n);//初始化有n个顶点的并查集
//输入m行数据
int num=n;//初始条件下连通子图的数量
for (int i = 0; i < m; ++i) {
int x,y;
scanf("%d%d",&x,&y);
UnionUp(x,y,num);
}
if(num==1){
printf("YES\n");
} else{
printf("NO\n");
}
}
}*/
#include
#include
#include
using namespace std;
struct Edge{
int x;
int y;
int weight;
};
#define N 1000 //元素上限个数
int father[N];//存储了每一个元素的父亲的下标
int height[N];//记录父亲结点到子节点的高度
//初始化
void Init(int n){
//最开始的时候每个元素的父亲都是自己
for(int i=1;iheight[x]){
father[y]=x;
}else{
//同等高度下合并就无所谓了单数要注意的是合并过去高度要+1
father[y]=x;
++height[x];
}
}
bool compare(Edge lhs,Edge rhs){
return lhs.weight vec;
while(scanf("%d",&n)!=EOF){
if(n==0){
break;
}
Init(n);//初始化
for (int i = 0; i < n*(n-1)/2; ++i) {
Edge edge;
scanf("%d%d%d",&edge.x,&edge.y,&edge.weight);
vec.push_back(edge);
}
//对容器中数据从小到大排序
sort(vec.begin(),vec.end(), compare);
int total=0;//权值之和
for (int i = 0; i < n*(n-1)/2; ++i) {
UnionUp(vec[i].x,vec[i].y,vec[i].weight,total);
}
printf("%d\n",total);
}
}