本章详细讲解分区格式化,硬盘分区,fdisk使用,mkfs格式化,mkfs.ext4,mkfs.xfs详细使用方法和示例
Linux fdisk 是一个创建和维护分区表的程序,实质上是对硬盘的格式化。当创建分区时,设置好硬盘的各项参数,指定硬盘主引导记录(MBR)。
对于文件系统需要的信息则是通过格式化产生,例如windows安装系统时,会将硬盘格式化成 C ,D ,E逻辑盘,并指定文件系统类型是NTFS(主流)。
fdisk 查看分区,命令如下:
[root@zaishu ~]# fdisk ~l //列出所有分区
[root@prometheus ~]# fdisk -l
Disk /dev/sda: 53.7 GB, 53687091200 bytes, 104857600 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk label type: dos
Disk identifier: 0x000c43e1
Device Boot Start End Blocks Id System
/dev/sda1 * 2048 411647 204800 83 Linux
/dev/sda2 411648 4605951 2097152 82 Linux swap / Solaris
/dev/sda3 4605952 104857599 50125824 83 Linux
含义如下:硬盘大小53.7G,53687091200 bytes; 一共包含104857600个扇区,每个扇区的大小512 bytes。
信息的下半部分是分区的信息,共 7 列,含义如下:
列名 | 含义 |
---|---|
Device | 分区的设备名。类似Windows中的C盘,d盘 |
Boot | 是否为启动引导分区,在这里 /dev/sda1 为启动引导分区。MBR的信息存储在这。 |
Start | 起始柱面,代表分区从哪里开始。 |
End | 终止柱面,代表分区到哪里结束。 |
Blocks | 分区的大小,单位是 KB。 |
id | 分区内文件系统的 ID。在 fdisk 命令中,可以 使用 “i” 查看。 |
System | 分区内安装的系统是什么。 |
特定硬盘分区
fdis /dev/sdb
[root@prometheus ~]# fdisk /dev/sdb
Welcome to fdisk (util-linux 2.23.2).
Changes will remain in memory only, until you decide to write them.
Be careful before using the write command.
输入 m 查看帮助
Command (m for help): m
Command action
a toggle a bootable flag
b edit bsd disklabel
c toggle the dos compatibility flag
d delete a partition
g create a new empty GPT partition table
G create an IRIX (SGI) partition table
l list known partition types
m print this menu
n add a new partition
o create a new empty DOS partition table
p print the partition table
q quit without saving changes
s create a new empty Sun disklabel
t change a partition's system id
u change display/entry units
v verify the partition table
w write table to disk and exit
x extra functionality (experts only)
命令 | 说 明 |
---|---|
a | 设置可引导标记 |
b | 编辑 bsd 磁盘标签 |
c | 设置 DOS 操作系统兼容标记 |
d | 删除一个分区 |
l | 显示所有文件系统类型 |
m | 显示帮助菜单 |
n | 新建分区 |
0 | 建立空白 DOS 分区表 |
P | 显示分区列表 |
q | 不保存退出 |
s | 新建空白 SUN 磁盘标签 |
t | 改变分区的系统 ID |
u | 改变显示记录单位 |
V | 验证分区表 |
w | 保存退出 |
X | 附加功能(仅专家) |
1. 添加硬盘
2. 查看硬盘
[root@zaishu ~]# fdisk -l
Disk /dev/sda: 53.7 GB, 53687091200 bytes, 104857600 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk label type: dos
Disk identifier: 0x000caa7c
Device Boot Start End Blocks Id System
/dev/sda1 * 2048 411647 204800 83 Linux
/dev/sda2 411648 4605951 2097152 82 Linux swap / Solaris
/dev/sda3 4605952 104857599 50125824 83 Linux
Disk /dev/sdb: 5368 MB, 5368709120 bytes, 10485760 sectors //操作系统已识别到这块硬盘
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
[root@zaishu ~]# fdisk /dev/sdb
Welcome to fdisk (util-linux 2.23.2).
Changes will remain in memory only, until you decide to write them.
Be careful before using the write command.
Device does not contain a recognized partition table
Building a new DOS disklabel with disk identifier 0x8f2b14b3.
Command (m for help): p //目前一个分区都没有
Disk /dev/sdb: 5368 MB, 5368709120 bytes, 10485760 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk label type: dos
Disk identifier: 0x8f2b14b3
Device Boot Start End Blocks Id System
Command (m for help): n //新建分区
Partition type:
p primary (0 primary, 0 extended, 4 free)
e extended
Select (default p): p //分区类型是主分区
Partition number (1-4, default 1): 1 //分区号
First sector (2048-10485759, default 2048): //默认会选择扇区的可用起始位置。
Last sector, +sectors or +size{K,M,G} (2048-10485759, default 10485759): +200M
// 可以使用size{K, M, G}的方式指定硬盘大小。也可以指定扇区数量指定大小。 /dev/sdb1的大小是200M
Partition 1 of type Linux and of size 200 MiB is set
Command (m for help):
#主分区建立好后,输入p,查看分区信息
Command (m for help): p
Disk /dev/sdb: 5368 MB, 5368709120 bytes, 10485760 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk label type: dos
Disk identifier: 0xdd762bbe
Device Boot Start End Blocks Id System
/dev/sdb1 2048 411647 204800 83 Linux
Command (m for help): w //输入w,信息写入分区表,保存
The partition table has been altered!
Calling ioctl() to re-read partition table.
Syncing disks.
主分区和扩展分区加起来最多只能建立 4 个,而扩展分区最多只能建立 1 个,可以在扩展分区当中建立N个逻辑分区。
[root@zaishu ~]# fdisk /dev/sdb
Welcome to fdisk (util-linux 2.23.2).
Changes will remain in memory only, until you decide to write them.
Be careful before using the write command.
Command (m for help): n
Partition type:
p primary (1 primary, 0 extended, 3 free)
e extended
Select (default p): e //选择e,扩展分区,
Partition number (2-4, default 2):
First sector (411648-10485759, default 411648):
Using default value 411648
Last sector, +sectors or +size{K,M,G} (411648-10485759, default 10485759): +2G
Partition 2 of type Extended and of size 2 GiB is set
Command (m for help): p
Disk /dev/sdb: 5368 MB, 5368709120 bytes, 10485760 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk label type: dos
Disk identifier: 0xdd762bbe
Device Boot Start End Blocks Id System
/dev/sdb1 2048 411647 204800 83 Linux
/dev/sdb2 411648 4605951 2097152 5 Extended
Command (m for help): w
The partition table has been altered!
Calling ioctl() to re-read partition table.
Syncing disks.
[root@zaishu ~]# fdisk /dev/sdb
Welcome to fdisk (util-linux 2.23.2).
Changes will remain in memory only, until you decide to write them.
Be careful before using the write command.
Command (m for help): p
Disk /dev/sdb: 5368 MB, 5368709120 bytes, 10485760 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk label type: dos
Disk identifier: 0xdd762bbe
Device Boot Start End Blocks Id System
/dev/sdb1 2048 411647 204800 83 Linux
/dev/sdb2 411648 4605951 2097152 5 Extended //扩展分区
Command (m for help): n
Partition type:
p primary (1 primary, 1 extended, 2 free)
l logical (numbered from 5) //表示现在可以创建逻辑分区
Select (default p): l
Adding logical partition 5
First sector (413696-4605951, default 413696):
Using default value 413696
Last sector, +sectors or +size{K,M,G} (413696-4605951, default 4605951): +500M
Partition 5 of type Linux and of size 500 MiB is set
Command (m for help): p
Disk /dev/sdb: 5368 MB, 5368709120 bytes, 10485760 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk label type: dos
Disk identifier: 0xdd762bbe
Device Boot Start End Blocks Id System
/dev/sdb1 2048 411647 204800 83 Linux
/dev/sdb2 411648 4605951 2097152 5 Extended
/dev/sdb5 413696 1437695 512000 83 Linux //创建的逻辑分区
Command (m for help): w
The partition table has been altered!
Calling ioctl() to re-read partition table.
Syncing disks.
所有的分区立过程中不保存退出是不会生效的,q 命令不保存退出;w 命令,保存退出。
格式化其实就是创建文件系统。分区完成后,通常需要对分区进行格式化,指定分区类型,例如windows当中指定类型是ntfs,centos 中指定类型是xfs/ext4。格式化后再指定挂载点。
[root@zaishu ~]# df -hT
Filesystem Type Size Used Avail Use% Mounted on
devtmpfs devtmpfs 476M 0 476M 0% /dev
tmpfs tmpfs 487M 0 487M 0% /dev/shm
tmpfs tmpfs 487M 14M 473M 3% /run
tmpfs tmpfs 487M 0 487M 0% /sys/fs/cgroup
/dev/sda3 xfs 48G 3.1G 45G 7% /
/dev/sda1 xfs 197M 138M 60M 70% /boot
tmpfs tmpfs 98M 0 98M 0% /run/user/0
mkfs [tab] [tab]:按下两下tab键查看系统支持哪些文件系统的格式化功能
mkfs -t [文件系统格式名]===>等同于mkfs.文件系统格式名
mkfs -t xfs 与 mkfs.xfs相同
mkfs -t ext4 与mkfs.ext4
mkfs.xfs [-b 参数] [-d 参数] [-i 参数] [-l 参数] [-L 参数] [-f] [-r 参数] 设备名称
参数
List item
-b
后面接的是区块容量,范围(512B-64KB),Linux限制最大4K
-d
data p相关参数 | |
---|---|
agcount= | 设置需要几个存储群组的意思(AG),通常与CPU有关 |
agsize= | 每个AG设置为多少容量的意思。通常agcount/agsize只选一个设置 |
file | 指的是格式化的设备是个文件而不是个设备的意思(例如虚拟磁盘) |
size= | data p的容量。你可以设置大小 |
su= | 当有RAID(磁盘列阵)时,代表stripe的数值大小,与下面的sw搭配使用 |
sw= | 当有RAID时,用于保存数据的磁盘数量(需扣除备份盘与备用盘) |
sunit= | 与su意思相同。不过单位使用的是几个sector(512B)的意思(一个stripe由多少个扇区组成) |
swidth= | 就是su*sw的数值,但是以几个sector(512B)来设置 |
-f
如果设备内已经有了文件系统,则需要使用-f强制格式化
-i
与inode有关的设置 | |
---|---|
size= | 最小的是256B,最大是2K。一般使用256B就足够了 |
internal=[0 | 1] |
logdev=device | log设备为后面接的那个设备上面的意思,需设置internal=0才可以 |
size= | 指定这块登录区的容量,通常最小得要512个区块,大约2M=以上才行 |
-L
Lable name
-r
指定realtime p的相关设置
extsize= extent数据设置,当使用RAID时,最好设置与swidth数据相同较佳。范围(4K-1G)
示范
通常格式化分区,不需要加任何选项
[root@zaishu ~]# mkfs.xfs /dev/sdb5
meta-data=/dev/sdb5 isize=512 agcount=4, agsize=32000 blks
= sectsz=512 attr=2, projid32bit=1
= crc=1 finobt=0, sparse=0
data = bsize=4096 blocks=128000, imaxpct=25
= sunit=0 swidth=0 blks
naming =version 2 bsize=4096 ascii-ci=0 ftype=1
log =internal log bsize=4096 blocks=855, version=2
= sectsz=512 sunit=0 blks, lazy-count=1
realtime =none extsz=4096 blocks=0, rtextents=0
创建ext4文件系统.centos 6 默认文件系统类型
mkfs.ext4 [-b 参数] [-L 参数] 设备名称
默认值已写入至/etc/mke2fs.conf这个文件中,通常不需要加任何选项。
[root@zaishu ~]# mkfs.ext4 /dev/sdb5
mke2fs 1.42.9 (28-Dec-2013)
Filesystem label=
OS type: Linux
Block size=1024 (log=0)
Fragment size=1024 (log=0)
Stride=0 blocks, Stripe width=0 blocks
128016 inodes, 512000 blocks
25600 blocks (5.00%) reserved for the super user
First data block=1
Maximum filesystem blocks=34078720
63 block groups
8192 blocks per group, 8192 fragments per group
2032 inodes per group
Superblock backups stored on blocks:
8193, 24577, 40961, 57345, 73729, 204801, 221185, 401409
Allocating group tables: done
Writing inode tables: done
Creating journal (8192 blocks): done
Writing superblocks and filesystem accounting information: done
MySQL性能优化_原理_实战
1、MySQL在金融互联网行业的企业级安装部署
目录 | 章节 |
---|---|
版本说明 | 版本说明 |
安装MySQL规范 | 1 安装方式 2 安装用户 3 目录规范 |
MySQL 5.7 安装部署 | 1 操作系统配置 2 创建用户 3 创建目录 4 安装 5 配置文件 6 安装依赖包 7 配置环境变量 8 初始化数据库 9 重置密码 |
MySQL8 安装 | MySQL8 安装 |
源码安装 | 1 安装依赖包 2 生成源码包 3 创建用户 4 编译安装 5 配置数据库 6 连接mysql |
多实例部署及注意事项 | 1 多实例概念 2 多实例安装 3 mysqld_multi(多实例第二种安装方式) |
2、mysql启动关闭原理和实战_及常见错误排查
目录 | 章节 |
---|---|
生产中MySQL启动方式 | 1、 启动原理 2、参数文件默认位置及优先级 3、 以server方式启动 4、 mysqld_safe方式 5、 mysqld 方式 6、 systemctl 方式 |
关库 | 1、相关参数innodb_fast_shutdown 2、相关参数innodb_force_recovery 3、关闭mysql多种方式 |
常见MySQL启动失败案例 | 1.、目录权限 2、参数问题 3、配置文件 4、端口占用 5、误删二进制文件 6、undo表空间异常 7、binlog缓冲异常 |
MySQL启动失败排查方法 | MySQL启动失败排查方法 |
连接MySQL数据库的方式 | 连接MySQL数据库的方式 |
MySQL数据库用户安全策略 | 1、初始化数据库 2、修改密码 3、删除无用的用户 4、mysql_secure_installation |
找回丢失的用户密码 | 找回丢失的用户密码 |
3、MySQL字符集和校对规则
目录 | 章节 |
---|---|
MySQL字符集和校验规则 | MySQL字符集和校验规则 |
查看字符集方法 | 1、查看mysql支持的字符集 2、查看字符集的校对规则 3、查看当前数据库的字符集 4、查看当前数据库的校对规则 |
MySQL字符集设置 | 1、字符集设置层级关系 2、设置MySQL服务器级别字符集 3、设置创建对象的字符集 |
字符集案例 | 1、常用字符集每个汉字占用字节多少 2、大小案例 |
插入中文乱码解决 | 插入中文乱码解决 |
数据库常见字符集及如何选择字符集 | 数据库常见字符集及如何选择字符集 |
生产中如何彻底避免出现乱码 | 生产中如何彻底避免出现乱码 |
4、史上最详细的Mysql用户权原理和实战_生产案例
目录 | 章节 |
---|---|
访问控制 | 1、连接验证(阶段一) 2、允许的连接 3、连接优先级 4、请求验证(阶段二) |
用户管理 | 1、新增用户 2、修改用户 3、删除用户 4、查看用户 |
密码管理 | 1、密码修改 2、密码过期设置 3、set password 4、密码过期策略 5、密码插件 |
MySQL用户权限管理 | 1、权限粒度 2、显示账户权限 3、显示账户非权限属性 4、库级权限 5、表级权限 6、列级权限 7、权限回收 |
资源限制 | 1、用户创建指定配额 2、修改配额 |
MySQL用户权限案例 | 1、断掉已清理的用户 2、忘记密码 3、如何禁止一个ip段的某个用户登录 4、创建开发账号 5、创建复制账号 6、创建管理员账号 |
5、InnoDB引擎原理和实战_通俗易懂
目录 | 章节 |
---|---|
缓冲池 | 1、默认引擎 2、设置缓冲池大小 3、优化缓冲池 4、管理缓冲池 5、数据页类型 |
线程 | 1、IO线程 2、主线程 |
index page | index page |
insert buffer page | insert buffer page |
重做日志 | 重做日志 |
回滚日志 | 回滚日志 |
checkpoint,刷写脏页check point | checkpoint |
关键特性 | 1、插入缓冲 2、数据写入可靠性提升技术-doublewrite 3、自适应哈希索引-AHI |
innodb预读预写技术 | 预读写 |
6、MySQL文件详解_物理结构_逻辑结构_原理和案例
目录 | 章节 |
---|---|
参数和配置文件 | 1、文件位置 2、查找参数 3、参数类型 4、参数修改 5、示例一 6、示例二 7、注意事项 |
错误日志文件 | 错误日志 |
通用日志 | 通用日志 |
慢查询日志 | 慢日志 |
binlog | 1、记录什么 2、用途 3、开启和参数配置 4、日志查看 5、日志刷新 6、删除日志 7、日志分析(mysqlbinlog) 8、利用二进制日志文件恢复误删的表 |
InnoDB存储引擎表空间文件 | 表空间文件 |
主从同步相关文件 | 主从同步文件 |
套接字文件 | 套接字文件 |
pid 文件 | pid 文件 |
redo log | 1、redo初识 2、日志组 3、与oracle redo的区别 4、相关参数 5、和binlog的区别 6、redo 缓冲区(innodb_flush_log_at_trx_commit) |
InnoDB存储引擎逻辑结构 | 1、表空间 2、段 3、区 4、页 |
表碎片清理 | 1、判断是否有碎片 2、整理碎片 |
表空间文件迁移 | 1、需求 2、操作 |
7、SQL编程开发与优化事项
目录 | 章节 |
---|---|
常用语句 | 1、导入数据 2、库操作 3、表操作 4、数据操作 5、use性能影响 6、delete、truncate、drop的区别 7、SQL语句分类 |
数据类型与性能 | 1、整型 2、浮点型 3、字符串类型 4、日期类型 |
MySQL约束 | 1、unsigned/signed 2、not null 3、count(*) 为什么慢 4、default 5、unique 6、 auto_increment 7、primary key |
SQL编程高级 | 1、查询Syntax 2、查询列 3、where子句 4、group by … having子句 5、order by子句 6、limit子句(分页) 7、聚合函数 8、合并查询 9、多表查询 10、子查询 |
表的元数据库管理 | 1、统计应用库哪些表没有使用innodb存储引擎 2、如何查看表中是否有大对象 3、统计数据库大小 4、统计表的大小 |
8、MySQL索引原理和案例
目录 | 章节 |
---|---|
MySQL索引与二分查找法 | 1、什么是索引 2、索引的优缺点 3、索引的最大长度 4、二分查找法:折半查找法 5、mysql一张表存多少数据后,索引性能就会下降? |
剖析b+tree数据结构 | 1、B和B+树的区别 2、索引树高度 3、非叶子节点 4、指针 5、叶子节点 6、双向指针 7、b+tree插入操作 8、b+tree删除操作 |
相辅相成的聚集索引和辅助索引 | 1、聚集索引 2、聚集索引特点 3、聚集索引的优势 4、辅助索引 |
覆盖索引与回表查询 | 1、回表查询 2、覆盖索引 |
创建高性能的主键索引 | 1、主键索引创建的原则 2、主键索引的特点 3、为什么建议使用自增列作为主键 |
唯一索引与普通索引的性能差距 | 1、唯一索引特点 2、普通索引特点 3、唯一索引与普通索引的性能差距 |
前缀索引带来的性能影响 | 1、作用 2、坏处 |
如何使用联合索引 | 1、什么是联合索引 2、创建原则 3、排序 |
Online DDL影响数据库的性能和并发 | 1、5.6版本之前 2、新版本 3、online ddl语法 4、相关参数 5、示例 6、影响 |
pt-ocs原理与应用 | 1、安装pt-osc 2、pt-osc语法 3、案例 4、pt-osc原理 |
生产中索引的管理 | 1、建表时创建索引 2、建表后创建索引 3、查看索引 |
SQL语句无法使用索引的情况 | 1、where条件 2、联合索引 3、联表查询 4、其他情况 |
9、information_schema和sys中性能查看
目录 | 章节 |
---|---|
最常用的STATISTICS和TABLES | 1、STATISTICS:用于存放索引的信息 2、TABLES:用于存放库表的元数据信息 |
判断索引创建是否合理 | 1、选择性 2、索引创建的建议 |
检查联合索引创建是否合理 | 1、联合索引创建是否合理 2、有了联合索引(a,b),还需要单独创建a索引吗? |
如何查找冗余索引 | 查找冗余索引 |
查找产生额外排序的sql语句 | 额外排序的sql语句 |
查找产生临时表的sql语句 | 临时表的sql语句 |
全表扫描的sql语句 | 全表扫描的sql语句 |
统计无用的索引 | 无用的索引 |
索引统计信息 | 1、存储索引统计信息 2、如何查看索引统计信息 |
10、MySQL优化器算法与执行计划
目录 | 章节 |
---|---|
简单嵌套查询算法-simple nested-loop join | simple nested-loop join |
基于索引的嵌套查询算法-index nested-loop join | index nested-loop join |
基于块的嵌套查询算法- block nested-loop join | block nested-loop join |
Multi-Range Read | MRR |
bached key access join | BKA |
mysql三层体系结构 | 体系结构 |
Index Condition Pushdown | 索引条件下推 |
一条查询SQL语句是怎样运行的 | 查询SQL语句 |
一条更新SQL语句是怎样运行的 | 更新SQL语句 |
MySQL长连接与短连接的选择 | 1、相关参数 2、断开连接 |
执行计划explain | 1、语法 2、执行计划解析 |
11、MySQL查询优化
目录 | 章节 |
---|---|
MySQL查询优化技术 | 概览 |
子查询优化 | 1、优化器自动优化 2、优化措施:子查询合并 3、优化措施:子查询上拉技术 |
外连接消除 | 外连接消除 |
生产环境不使用join联表查询 | 不使用join |
group by分组优化 | 1、group by执行流程 2、为什么group by要创建临时表 |
order by排序优化 | 排序优化 |
MySQL性能抖动问题 | 性能抖动问题 |
count(*)优化 | count(*)优化 |
磁盘性能基准测试 | 1、安装sysbench 2、生成文件 3、测试文件io 4、清除文件 |
MySQL基准测试 | 1、生成数据 2、测试(读) 3、测试(写) 4、清理数据 |
12、事务原理和实战
目录 | 章节 |
---|---|
认识事务 | 认识事务 |
事务控制语句 | 1、开启事务 2、事务提交 3、事务回滚 |
事务的实现方式 | 1、原子性 2、一致性 3、隔离性 4、持久性 |
purge thread线程 | purge thread线程 |
事务统计QPS与TPS | 1、QPS 2、TPS |
事务隔离级别 | 1、隔离级别 2、查看隔离级别 3、设置隔离级别 4、不同隔离级别下会产生什么隔离效果 |
事务组提交group commit | 组提交 |
事务两阶段提交 | 两阶段提交 |
MVCC多版本并发控制 | 1、MVCC原理 2、MVCC案例 |
13、锁的原理和应用
目录 | 章节 |
---|---|
认识锁 | 1、锁的作用 2、加锁的过程 3、锁对象:事务 |
innodb行锁 | 1、行锁类型 2、共享锁(S锁) 3、排他锁(X锁) |
索引对行锁粒度的影响 | 1、行锁粒度有哪些 2、在RC隔离级别下不同索引产生的锁的范围 3、RR隔离级别下不同索引产生锁的范围 |
FTWRL全局读锁 | FTWRL全局读锁 |
innodb表锁 | innodb表锁 |
innodb意向锁与MDL锁 | 1、意向锁 2、意向锁作用 3、意向锁冲突情况 4、MDL锁 |
自增锁 | 自增锁 |
插入意向锁 | 插入意向锁 |
死锁 | 1、什么是死锁 2、相关参数 3、避免死锁 4、锁的状态 |
两阶段锁协议 | 两阶段锁协议 |
14、慢查询原理和实战_快速优化方法_优化工具
目录 | 章节 |
---|---|
1. 系统状态 | show status |
2. 慢查询 | 2.1 慢查询开启 2.2 简单示例 2.3 数据准备 |
3. mysqldumpslow | 3.1 语法 3.2 常见用法 |
4. pt-query-digest | 4.1 安装 4.2 语法选项 4.3 报告解读 4.4 用法示例 |
5. 优化工具(soar) | 5.1 安装配置 5.2 添加数据库 5.3 语句优化 |
15、备份恢复原理和实战_逻辑备份_物理备份_金融行业备份还原脚本
目录 | 章节 |
---|---|
1.生产中备份方式 | 1.1 物理备份与逻辑备份 1.2 联机与脱机备份 1.3 完整备份与增量备份 1.4 常用命令 |
2.mysqldump备份 | 2.1 相关参数 2.2 备份所有数据库 2.3 备份指定数据库 2.4 备份指定表 2.6 只导出结构 2.7 只导出数据 2.8 --tab(生成文本,类似load) 2.8 mysqldump原理 2.9 binlog异步备份 2.10 利用mysqldump全备及binlog恢复数据 |
3.xtrabackup | 3.1 Xtrabackup安装 3.2 原理 3.2 备份过程 3.4 恢复原理 3.3 相关参数 3.4 xtrabackup相关文件 3.5 备份示例 3.6 还原示例 |
4.binlog备份和恢复(数据库恢复) | 4.1 找到恢复时间点 4.2 增量恢复 |
5. 生产环境的备份恢复实战 | 5.1 实施部署 5.1.1 环境清单 5.1.2 备份目的 5.1.3 备份说明 5.1.4 实施步骤 5.1.5 全备脚本 5.1.6 差异备份脚本 5.2 实施部署备份还原 5.2.1 Xtraback还原全量/差异备份 5.2.2 故障点数据恢复 5.2.3 增量恢复 |
16、主从复制,gtid,并行复制_半同步复制_实操案例_常用命令_故障处理
目录 | 章节 |
---|---|
1.认识主从复制 | 1.1 主从复制原理深入讲解 1.2 主从复制相关参数 1.3.主从复制架构部署 1.4从库状态详解 1.5 .过滤复制 |
2 .gtid复制 | 2.1 什么是GTID? 2.2 GTID主从配置 2.5 gtid维护 2.4 GTID的特点 2.3 工作原理 2.4 gtid相关状态行和变量 |
3. 并行复制 | 3.1 延迟的原因 3.2 并行复制设置 3.3 查看并行复制 |
4. 增强半同步复制 | 4.1 异步复制 4.2 半同步复制 4.3 增强半同步复制 4.4 配置增强半同步 |
5. 案例 | 5.1 主库删除操作导致sql线程关闭案例 5.2 主从复制中断解决方案及案例 5.3 延迟复制 5.4 主库drop误操作利用延迟复制恢复案例 |
6 常用命令 | 6.1 启动线程 6.2 关闭线程 6.3 查看 6.4 重置 6.5 主从数据一致性校验 |
17、MySQL高可用和读写分离架构
MHA
目录 | 章节 |
---|---|
MHA | 介绍 |
架构和相关组件 | 架构和相关组件 |
工作流程 | 工作流程 |
MHA高可用架构部署 | 1、环境准备 2、软件安装 3、创建软链接 4、配置各节点互信 5、节点免密验证 6、mha管理用户 7、配置文件 8、状态检查 9、开启MHA |
主库宕机故障模拟及处理 | 主库宕机故障模拟及处理 |
MHA VIP自动切换 | VIP自动切换 |
MHA主从数据自动补足 | MHA主从数据自动补足 |
Atlas
目录 | 章节 |
---|---|
Atlas读写分离高性能架构 | 介绍 |
安装配置 | 安装配置 |
配置注解 | 配置注解 |
启动和关闭 | 启动和关闭 |
读写分离架构应用 | 读写分离架构应用 |
创建应用用户 | 创建应用用户 |
Atlas在线管理 | Atlas在线管理 |
读写分离避坑指南 | 读写分离避坑指南 |
18、MySQL分库分表_原理实战
目录 | 章节 |
---|---|
1.MyCAT分布式架构入门及双主架构 | 1.1 主从架构 1.2 MyCAT安装 1.3 启动和连接 1.4 配置文件介绍 |
2.MyCAT读写分离架构 | 2.1 架构说明 2.2 创建用户 2.3 schema.xml 2.4 连接说明 2.5 读写测试 2.6 当前是单节点 |
3.MyCAT高可用读写分离架构 | 3.1 架构说明 3.3 schema.xml(配置) 3.4 文件详解 3.4.1 schema标签 3.4.2 table标签 3.4.3 dataNode标签 3.4.4 dataHost 3.4 读写测试 3.5 故障转移 |
4.MyCAT垂直分表 | 4.1 架构 4.2 新建表 4.3 配置mycat 4.4 验证 |
5 MyCAT水平分表-范围分片 | 5.1 新建表 5.2 schema.xml 5.2 rule.xml 5.3 autopartition-long.txt 5.4 验证 |
6. MyCAT水平分表-取模分片 | 取模分片 |
7. MyCAT水平分表-枚举分片 | 枚举分片 |
8. MyCAT全局表与ER表 | 全局与ER表 |
8.1 全局表 | 8.1.1 特性 8.1.2 建表 8.1.3 配置 8.1.4 验证 8.1.5 分析总结(执行计划) |
8.2 ER表 | 8.2.1 特性 8.2.2 建表 8.2.3 配置 8.2.4 测试验证,子表是否跟随父表记录分片 8.2.5 分析总结(执行计划) |
19、基准性能测试_sysbench
目录 | 章节 |
---|---|
1. sysbench | 1.1 用途 1.2 安装 1.3 版本 1.4 查看帮助 1.5 测试过程阶段 |
2 CPU 性能测试 | 2.1 测试原理 2.2 查看帮助 2.3 测试 |
3. 内存性能测试 | 3.1 查看帮助信息 3.2 测试过程 |
4.磁盘性能基准测试 | 4.1 查看帮助 4.2 生成文件(prepare) 4.3 测试文件io(run) 4.4 结果分析 4.5 清除文件(cleanup) |
5. 线程测试 | 5.1 查看帮助信息 5.2 测试过程 |
6. MySQL基准测试 | 6.1 语法参数 6.2 生成数据 6.3 测试(读) 6.4 测试(写) 6.5 清理数据 |