混淆矩阵见:我的博客
import numpy as np
from sklearn.metrics import accuracy_score
y_pred = [0, 2, 1, 3]
y_true = [0, 1, 2, 3]
print(accuracy_score(y_true, y_pred))
print(accuracy_score(y_true, y_pred, normalize=False))
# 在具有二元标签指示符的多标签分类案例中
print(accuracy_score(np.array([[0, 1], [1, 1]]), np.ones((2, 2))))
y_true = [0, 1, 2, 0, 1, 2]
y_pred = [0, 2, 1, 0, 0, 1]
from sklearn.metrics import precision_score
print(precision_score(y_true, y_pred, average='macro'))
print(precision_score(y_true, y_pred, average='micro'))
print(precision_score(y_true, y_pred, average='weighted'))
print(precision_score(y_true, y_pred, average=None))
from sklearn.metrics import recall_score
print(recall_score(y_true, y_pred, average='macro'))
print(recall_score(y_true, y_pred, average='micro'))
print(recall_score(y_true, y_pred, average='weighted'))
print(recall_score(y_true, y_pred, average=None))
from sklearn.metrics import f1_score
print(f1_score(y_true, y_pred, average='macro'))
print(f1_score(y_true, y_pred, average='micro'))
print(f1_score(y_true, y_pred, average='weighted'))
print(f1_score(y_true, y_pred, average=None))
宏平均是指在计算均值时使每个类别具有相同的权重,最后结果是每个类别的指标的算术平均值。
微平均是指计算多分类指标时赋予所有类别的每个样本相同的权重,将所有样本合在一起计算各个指标。
参考:参考博客