1、已知 lim x → x 0 f ( x ) = 0 , lim x → x 0 g ( x ) = 0 \lim_{x \to x0} f(x) = 0, \lim_{x \to x0}g(x) = 0 limx→x0f(x)=0,limx→x0g(x)=0
(1) lim x → x 0 f ( x ) g ( x ) = 0 , \lim_{x \to x0} \frac{f(x)}{g(x)} = 0, limx→x0g(x)f(x)=0,则称f(x)是g(x)在{x → x 0 \to x0 →x0}时的高阶无穷小, 记作f(x) = o(g(x));
(2) lim x → x 0 f ( x ) g ( x ) = ∞ \lim_{x \to x0} \frac{f(x)}{g(x)} = ∞ limx→x0g(x)f(x)=∞,则称f(x)是g(x)在{x → x 0 \to x0 →x0}时的低阶无穷小;
(3) lim x → x 0 f ( x ) g ( x ) = k ≠ 0 \lim_{x \to x0} \frac{f(x)}{g(x)} = k \neq 0 limx→x0g(x)f(x)=k=0,则称f(x)是g(x)在{x → x 0 \to x0 →x0}时的同阶无穷小;\特别地, 若 lim x → x 0 f ( x ) g ( x ) = 1 \lim _{x \to x0} \frac{f(x)}{g(x)} = 1 limx→x0g(x)f(x)=1,则称f(x)是g(x)在{x → x 0 \to x0 →x0}时的等阶无穷小。
x的1阶无穷小:
(1) sin x ∼ x \sin x \sim x sinx∼x
(2) tan x ∼ x \tan x \sim x tanx∼x
(3 ) arcsin x ∼ x )\arcsin x \sim x )arcsinx∼x
(4) arctan x ∼ x \arctan x \sim x arctanx∼x
(5) ln ( 1 + x ) ∼ x \ln(1 + x) \sim x ln(1+x)∼x
(6) e x − 1 ∼ x e^{x} - 1 \sim x ex−1∼x
(7) a x − 1 ∼ x l n a a^{x} - 1 \sim xlna ax−1∼xlna
(8) 1 + x n − 1 ∼ 1 n x \sqrt[n]{1 + x} - 1 \sim \frac{1}{n}x n1+x−1∼n1x
(9) ( 1 + x ) a − 1 ∼ a x (1 + x) ^ a - 1 \sim ax (1+x)a−1∼ax
x的2阶无穷小:
(1) 1 − cos x ∼ 1 2 x 2 1 - \cos x \sim \frac{1}{2}x^2 1−cosx∼21x2
(2) 1 − cos n x ∼ n 2 x 2 1 - \cos^nx \sim \frac{n}{2}x^2 1−cosnx∼2nx2
(3) ln ( 1 + x ) − x ∼ 1 2 x 2 \ln(1 + x) - x \sim \frac{1}{2}x^2 ln(1+x)−x∼21x2
x的3阶无穷小:
(1) x − sin x ∼ 1 6 x 3 x - \sin x \sim \frac{1}{6}x^3 x−sinx∼61x3
(2) tan x − x ∼ 1 3 x 3 \tan x - x \sim \frac{1}{3}x^3 tanx−x∼31x3
(3) x − a r c s i n x ∼ 1 6 x 3 x - arcsinx \sim \frac{1}{6}x^3 x−arcsinx∼61x3
(4) arctan x − x ∼ 1 3 x 3 \arctan x - x \sim \frac{1}{3}x^3 arctanx−x∼31x3
1、 若 α ∼ α ~ , β ∼ β ~ , 且 lim β ~ α ~ 存在,则 lim β α = lim β ~ α ~ . 若\alpha \sim \tilde{\alpha} ,\beta \sim \tilde{\beta},且\lim{\frac{\tilde{\beta}}{\tilde{\alpha}}}存在,则\lim{\frac{\beta}{\alpha}} = \lim {\frac{\tilde{\beta}}{\tilde{\alpha}} }. 若α∼α~,β∼β~,且limα~β~存在,则limαβ=limα~β~.
证: lim β α = lim β β ~ ⋅ β ~ α ~ ⋅ α ~ α = lim β ~ α ~ . 证:\lim{\frac{\beta}{\alpha}} = \lim{\frac{\beta}{\tilde{\beta}}\cdot\frac{\tilde{\beta}}{\tilde{\alpha}}\cdot\frac{\tilde{\alpha}}{\alpha}} = \lim{\frac{\tilde{\beta}}{\tilde{\alpha}}}. 证:limαβ=limβ~β⋅α~β~⋅αα~=limα~β~.
注意:等价定理说明等价无穷小只能用在相对于整个极限而言的乘除因子中,不可用在加减法中。
α ∼ β 的充分必要条件是 β = α + o ( α ) \alpha \sim \beta 的充分必要条件是\beta = \alpha + o(\alpha) α∼β的充分必要条件是β=α+o(α)
定理1:有限个无穷小的和也是无穷小
定理2:有界函数与无穷小的乘积是无穷小
推论1:常数与无穷小的乘积是无穷小
推论2:有限个无穷小的乘积是无穷小
定理3:如果 lim f ( x ) = A , lim g ( x ) = B \lim f(x) = A, \lim g(x) = B limf(x)=A,limg(x)=B,那么
(1) lim [ f ( x ) ± lim g ( x ) ] = A ± B \lim[f(x) \pm \lim g(x)] = A \pm B lim[f(x)±limg(x)]=A±B
(2) l i m [ f ( x ) ⋅ g ( x ) ] = lim f ( x ) ⋅ lim g ( x ) = A ⋅ B lim[f(x) \cdot g(x)] = \lim f(x) \cdot \lim g(x) = A \cdot B lim[f(x)⋅g(x)]=limf(x)⋅limg(x)=A⋅B
(3)若又有B ≠ 0 , 则 lim f ( x ) g ( x ) = lim f ( x ) lim g ( x ) = A B \neq 0, 则\lim \frac{f(x)}{g(x)} = \frac{\lim f(x)}{\lim g(x)} = \frac{A}{B} =0,则limg(x)f(x)=limg(x)limf(x)=BA
(4)若又有A,B不全为0,则 lim f ( x ) g ( x ) = A B \lim f(x)^{g(x)} = A^{B} limf(x)g(x)=AB
推论3:如果 lim f ( x ) 存在 , 而 c 为常数 , 则 lim [ c f ( x ) ] = c lim f ( x ) . \lim f(x)存在,而c为常数,则\lim [cf(x)] = c \lim f(x). limf(x)存在,而c为常数,则lim[cf(x)]=climf(x).
推论4:如果 lim f ( x ) 存在 , 而 n 为正整数 , 则 lim [ f ( x ) ] n = [ lim f ( x ) ] n . \lim f(x)存在,而n为正整数,则\lim {[f(x)]}^n = {[\lim f(x)]}^n. limf(x)存在,而n为正整数,则lim[f(x)]n=[limf(x)]n.
推论5(抓大头):
( 1 ) lim P m ( x ) Q n ( x ) = lim x → ∞ a 0 + a 1 x + a 2 x 2 + . . . + a m x m b 0 + b 1 x + b 2 x 2 + . . . + b n x n = { 0 , m < n a m b n , m = n ∞ , m > n . (1)\lim \frac{P_m(x)}{Q_n(x)} = \lim_{x\to\infty}\frac{a_0 + a_1x + a_2x^2 + ... + a_m x^m}{b_0+b_1x+b_2x^2+...+b_nx^n} = \left\{\begin{matrix} 0, m \lt n \\ \frac{a_m}{b_n} , m = n\\ \infty, m \gt n. \end{matrix}\right. (1)limQn(x)Pm(x)=x→∞limb0+b1x+b2x2+...+bnxna0+a1x+a2x2+...+amxm=⎩ ⎨ ⎧0,m<nbnam,m=n∞,m>n.
( 2 ) lim x → 0 α m ( x ) β n ( x ) = lim x → 0 α m x m + o ( x m ) b n x n + o ( x n ) = { ∞ , m < n , a m b n , m = n , a m , b n 均不为零 . 0 , m > n . (2)\lim_{x \to 0}\frac{\alpha_m(x)}{\beta_n(x)} = \lim_{x\to0}\frac{\alpha_mx^m + o(x^m)}{b_nx^n + o(x^n)} = \left\{\begin{matrix} \infty, m \lt n,\\ \frac{a_m}{b_n}, m = n, a_m,b_n均不为零.\\ 0, m \gt n. \end{matrix}\right. (2)x→0limβn(x)αm(x)=x→0limbnxn+o(xn)αmxm+o(xm)=⎩ ⎨ ⎧∞,m<n,bnam,m=n,am,bn均不为零.0,m>n.
定理4:(复合函数的极限运算法则)设函数y = f[g(x)]是由函数u = g(x) 与函数y = f(u)复合而成,f(g(x))在点x_0的某去心邻域内有定义,若 lim x → x 0 g ( x ) = u 0 , lim u → u 0 f ( u ) = A \lim_{x\to{x_0}}g(x) = u_0,\lim_{u\to{u_0}}f(u) = A limx→x0g(x)=u0,limu→u0f(u)=A,且存在
δ 0 > 0 \delta_0 \gt 0 δ0>0,当x ϵ U o ( x 0 , u 0 ) 时 , 有 g ( x ) ≠ u 0 \epsilon \stackrel{o}{U}(x_0, u_0)时,有g(x)\neq u_0 ϵUo(x0,u0)时,有g(x)=u0,
则 lim x → x 0 f [ g ( x ) ] 则\lim_{x\to x_0}f[g(x)] 则limx→x0f[g(x)] = lim u → u 0 f ( u ) = A . \lim_{u\to u_0}f(u) = A. limu→u0f(u)=A.
(1) lim x → x 0 f ( x ) g ( x ) 为 0 0 型或 ∞ ∞ 型 . \lim_{x \to x_0} \frac{f(x)}{g(x)}为\frac{0}{0}型或\frac{\infty}{\infty}型. limx→x0g(x)f(x)为00型或∞∞型.
(2) 在 x = x 0 在x=x_0 在x=x0的某去心邻域内,函数f(x),g(x)可导且 g ′ ( x ) ≠ 0. {g}'(x)\neq0. g′(x)=0.
(3) lim x → x 0 f ′ ( x ) g ′ ( x ) 存在或为无穷大 . \lim_{x\to x0}\frac{{f}'(x)}{{g}'(x)}存在或为无穷大. limx→x0g′(x)f′(x)存在或为无穷大.
(1)代入x的极限值,分析极限的类型和可使用的化简
(2)化简:
1、根式有理化
2、提(约)公因子
3、计算非零因子
4、等价无穷小替换
5、拆分极限存在的项
6、变量替换(尤其是倒代换)
7、幂指函数指数化
(3) 求值:
1、洛必达法则
2、泰勒公式
(1) f ′ ( x 0 ) = lim Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x {f}'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} f′(x0)=limΔx→0Δxf(x0+Δx)−f(x0)
(2) f ′ ( x 0 ) = lim x → x 0 f ( x + x 0 ) − f ( x 0 ) x − x 0 {f}'(x_0) = \lim_{x \to x_0}\frac{f(x+x_0) - f(x_0)}{x - x_0} f′(x0)=limx→x0x−x0f(x+x0)−f(x0)
(1)切线的斜率
(2)切线方程:
y − f ( x 0 ) = f ′ ( x 0 ) ( x − x 0 ) y - f(x_0) = {f}'(x_0)(x - x_0) y−f(x0)=f′(x0)(x−x0)
(3)法线方程:
y − f ( x 0 ) = − 1 f ′ ( x 0 ) ( x − x 0 ) y - f(x_0) = -\frac{1}{{f}'(x_0)}(x - x_0) y−f(x0)=−f′(x0)1(x−x0)
(1) ∫ a b [ f ( x ) + g ( x ) ] d x = ∫ a b f ( x ) d x = ∫ a b g ( x ) d x \int_{a}^{b}[f(x) + g(x)]\mathrm{d}x = \int_{a}^{b}f(x) \mathrm{d} x = \int_{a}^{b}g(x) \mathrm{d} x ∫ab[f(x)+g(x)]dx=∫abf(x)dx=∫abg(x)dx
(2) ∫ a b f ( x ) d x = ∫ a c f ( x ) d x + ∫ c b f ( x ) d x \int_{a}^{b} f(x)\mathrm{d}x= \int_{a}^{c} f(x)\mathrm{d}x+ \int_{c}^{b}f(x)\mathrm{d}x ∫abf(x)dx=∫acf(x)dx+∫cbf(x)dx
( 1 ) 若 f ( x ) ≤ g ( x ) 且 f ( x ) ≠ g ( x ) , 则 ∫ a b f ( x ) d x < ∫ a b g ( x ) d x (1)若f(x)\le g(x) 且f(x)\neq g(x),则\int_{a}^{b}f(x)\mathrm{d}x \lt \int_{a}^{b}g(x)\mathrm{d}x (1)若f(x)≤g(x)且f(x)=g(x),则∫abf(x)dx<∫abg(x)dx
( 2 ) 若 m ≤ f ( x ) ≤ M , 则 m ( b − a ) ≤ ∫ a b f ( x ) d x ≤ M ( b − a ) . (2)若m \le f(x) \le M, 则m(b - a) \le \int_{a}^{b}f(x)\mathrm{d}x \le M(b - a). (2)若m≤f(x)≤M,则m(b−a)≤∫abf(x)dx≤M(b−a).
( 3 ) 积分中值定理 : ∫ a b f ( x ) d x = f ( ξ ) ⋅ ( b − a ) , ξ ε [ a , b ] (3)积分中值定理:\int_{a}^{b}f(x)\mathrm{d}x = f(\xi)\cdot(b - a) , \xi \varepsilon \left[ a, b\right ] (3)积分中值定理:∫abf(x)dx=f(ξ)⋅(b−a),ξε[a,b]
( 4 ) ∣ ∫ a b f ( x ) d x ∣ ≤ ∫ a b ∣ f ( x ) ∣ d x (4)\left | \int_{a}^{b} f(x)\mathrm{d}x\right| \le \int_{a}^{b} \left| f(x)\right|\mathrm{d} x (4) ∫abf(x)dx ≤∫ab∣f(x)∣dx
( 1 ) 若 f ( x ) 为偶函数 , 则 ∫ − a a f ( x ) d x = 2 ⋅ ∫ 0 a f ( x ) d x (1) 若f(x)为偶函数,则\int_{-a}^{a}f(x)\mathrm{d}x = 2\cdot\int_{0}^{a}f(x)\mathrm{d} x (1)若f(x)为偶函数,则∫−aaf(x)dx=2⋅∫0af(x)dx
( 2 ) 若 f ( x ) 为奇函数 , 则 ∫ − a a f ( x ) d x = 0. (2) 若 f(x)为奇函数,则\int_{-a}^{a}f(x)\mathrm{d}x = 0. (2)若f(x)为奇函数,则∫−aaf(x)dx=0.
∫ a b f ( x ) d x = F ( x ) ∣ a b = F ( b ) − F ( a ) \int_{a}^{b}f(x)\mathrm{d}x = \left .F(x)\right|_{a}^{b} = F(b) - F(a) ∫abf(x)dx=F(x)∣ab=F(b)−F(a)
∫ a b f ( x ) d x x = a + b − t ‾ ‾ ∫ a b f ( a + b − t ) d t = ∫ a b f ( a + b − x ) d x = 1 2 ∫ a b [ f ( x ) + f ( a + b − x ] d x \int_{a}^{b}f(x)\mathrm{d}x \underline{\underline{x = a + b - t}} \int_{a}^{b}f(a +b - t)\mathrm{d}t = \int_{a}^{b}f(a + b - x) \mathrm{d}x = \frac{1}{2}\int_{a}^{b}\left[ f(x) + f(a + b - x \right]\mathrm{d}x ∫abf(x)dxx=a+b−t∫abf(a+b−t)dt=∫abf(a+b−x)dx=21∫ab[f(x)+f(a+b−x]dx
∫ f ( x ) d x = F ( x ) + C \int f(x) \mathrm{d}x = F(x) + C ∫f(x)dx=F(x)+C
( 1 ) C ′ = 0 (1){C}' = 0 (1)C′=0
( 2 ) ∫ 0 d x = C (2)\int 0 \mathrm{d}x = C (2)∫0dx=C
( 3 ) ( x α ) ′ = α x α − 1 (3){(x ^ \alpha)}' = \alpha x^{\alpha - 1} (3)(xα)′=αxα−1
( 4 ) ∫ x α − 1 d x = 1 α ⋅ x a + c (4)\int x^{\alpha - 1}\mathrm{d}x =\frac{1}{\alpha}\cdot x^a +c (4)∫xα−1dx=α1⋅xa+c
( 5 ) sin ′ x = cos x (5){\sin}'x = \cos x (5)sin′x=cosx
( 6 ) ∫ cos x d x = sin x + c (6)\int \cos x \mathrm{d}x = \sin x + c (6)∫cosxdx=sinx+c
( 7 ) cos ′ x = − sin x (7){\cos }' x = -\sin x (7)cos′x=−sinx
( 8 ) ∫ sin x d x = − cos x + c (8)\int \sin x \mathrm{d}x = -\cos x + c (8)∫sinxdx=−cosx+c
( 9 ) tan ′ x = sec 2 x (9){\tan}' x = {\sec} ^ 2 x (9)tan′x=sec2x
( 10 ) ∫ sec 2 x d x = tan x + c (10)\int {\sec }^2 x \mathrm{d}x = \tan x + c (10)∫sec2xdx=tanx+c
( 11 ) ( cot x ) ′ = − csc 2 x (11){(\cot x)}' = -{\csc } ^ 2 x (11)(cotx)′=−csc2x
( 12 ) ∫ csc 2 x d x = − cot x + c (12)\int {\csc}^2 x \mathrm{d}x = -\cot x + c (12)∫csc2xdx=−cotx+c
( 13 ) ( sec x ) ′ = sec x ⋅ tan x (13){(\sec x)}' = \sec x \cdot \tan x (13)(secx)′=secx⋅tanx
( 14 ) ∫ sec x ⋅ tan x d x = sec x + c (14)\int \sec x \cdot \tan x \mathrm{d}x = \sec x + c (14)∫secx⋅tanxdx=secx+c
( 15 ) ( csc x ) ′ = − csc x ⋅ cot x (15){(\csc x)}' = -\csc x \cdot \cot x (15)(cscx)′=−cscx⋅cotx
( 16 ) ∫ csc x ⋅ cot x d x = − csc x + c (16)\int \csc x \cdot \cot x \mathrm{d}x = -\csc x + c (16)∫cscx⋅cotxdx=−cscx+c
( 17 ) ln ∣ x ∣ ′ = 1 x (17){\ln \left | x\right |}' = \frac{1}{x} (17)ln∣x∣′=x1
( 18 ) ∫ 1 x = ln ∣ x ∣ + c (18)\int \frac{1}{x} = \ln \left | x \right | + c (18)∫x1=ln∣x∣+c
( 19 ) ( a x ) ′ = a x ⋅ ln a ( a > 0 , a ≠ 1 ) (19){(a ^x)}' = a ^ x \cdot \ln a(a \gt 0, a \neq 1) (19)(ax)′=ax⋅lna(a>0,a=1)
( 20 ) ∫ a x d x = 1 ln a a x + c ( a > 0 , a ≠ 1 ) (20)\int a ^x \mathrm {d}x = \frac{1}{\ln a} a^x + c (a \gt 0, a \neq 1) (20)∫axdx=lna1ax+c(a>0,a=1)
( 21 ) ( e x ) ′ = e x (21){(e ^ x)}' = e ^ x (21)(ex)′=ex
( 22 ) ∫ e x d x = e x + c (22)\int e ^x \mathrm {d}x = e ^x + c (22)∫exdx=ex+c
( 23 ) ( arcsin x ) ′ = 1 1 − x 2 (23){(\arcsin x)}' = \frac{1}{\sqrt{1 - x^2}} (23)(arcsinx)′=1−x21
( 24 ) ∫ 1 1 − x 2 d x = arcsin x + c (24)\int\frac{1}{\sqrt{1 - x ^ 2}}\mathrm{d}x = \arcsin x + c (24)∫1−x21dx=arcsinx+c
( 25 ) ( arctan x ) ′ = 1 1 + x 2 (25){(\arctan x)}' = \frac{1}{1 + x ^ 2} (25)(arctanx)′=1+x21
( 26 ) ∫ 1 1 + x 2 d x = arctan x + c (26)\int \frac{1}{1 + x^2}\mathrm{d}x = \arctan x + c (26)∫1+x21dx=arctanx+c
( 27 ) ( ln ∣ x + x 2 + a ∣ ) ′ = 1 x 2 + a (27){(\ln \left | x + \sqrt{x ^ 2 + a}\right | )}' = \frac{1}{\sqrt{x ^ 2 + a}} (27)(ln x+x2+a )′=x2+a1
( 28 ) ∫ 1 x 2 + a = ln ∣ x + x 2 + a ∣ + c (28)\int\frac{1}{\sqrt{x ^ 2 + a}} = \ln \left| x + \sqrt{x ^ 2 + a}\right| + c (28)∫x2+a1=ln x+x2+a +c
1、第一类换元法(凑微分)
2、第二类换元法(去根号)
3、分部积分法
4、有理函数积分法