PSO 粒子群算法

微粒群算法,又称粒子群优化(Particle Swarm Optimization, PSO),是由J. Kennedy和R. C. Eberhart等于1995年开发的一种演化计算技术,来源于对一个简化社会模型的模拟。其中“群(swarm)”来源于微粒群符合M. M. Millonas在开发应用于人工生命(artificial life)的模型时所提出的群体智能的5个基本原则。“粒子(particle)”是一个折衷的选择,因为既需要将群体中的成员描述为没有质量、没有体积的,同时也需要描述它的速度和加速状态。

PSO算法最初是为了图形化的模拟鸟群优美而不可预测的运动。而通过对动物社会行为的观察,发现在群体中对信息的社会共享提供一个演化的优势,并以此作为开发算法的基础。通过加入近邻的速度匹配、并考虑了多维搜索和根据距离的加速,形成了PSO的最初版本。之后引入了惯性权重w来更好的控制开发(exploitation)和探索(exploration),形成了标准版本。

原理:

PSO算法是基于群体的,根据对环境的适应度将群体中的个体移动到好的区域。然而它不对个体使用演化算子,而是将每个个体看作是D维搜索空间中的一个没有体积的微粒(点),在搜索空间中以一定的速度飞行,这个速度根据它本身的飞行经验和同伴的飞行经验来动态调整。第i个微粒表示为Xi = (xi1, xi2, …, xiD),它经历过的最好位置(有最好的适应值)记为Pi = (pi1, pi2, …, piD),也称为pbest。在群体所有微粒经历过的最好位置的索引号用符号g表示,即Pg,也称为gbest。微粒i的速度用Vi = (vi1, vi2, …, viD)表示。对每一代,它的第d维(1 ≤ d ≤ D)根据如下方程进行变化:

vid = wvid+c1rand()(pid-xid)+c2Rand()*(pgd-xid) (1a)

xid = xid+vid (1b)

其中w为惯性权重(inertia weight),c1和c2为加速常数(acceleration constants),rand()和Rand()为两个在[0,1]范围里变化的随机值。

此外,微粒的速度Vi被一个最大速度Vmax所限制。如果当前对微粒的加速导致它的在某维的速度vid超过该维的最大速度vmax,d,则该维的速度被限制为该维最大速度vmax,d。

对公式(1a),第一部分为微粒先前行为的惯性,第二部分为“认知(cognition)”部分,表示微粒本身的思考;第三部分为“社会(social)”部分,表示微粒间的信息共享与相互合作。

“认知”部分可以由Thorndike的效应法则(law of effect)所解释,即一个得到加强的随机行为在将来更有可能出现。这里的行为即“认知”,并假设获得正确的知识是得到加强的,这样的一个模型假定微粒被激励着去减小误差。

“社会”部分可以由Bandura的替代强化(vicarious reinforcement)所解释。根据该理论的预期,当观察者观察到一个模型在加强某一行为时,将增加它实行该行为的几率。即微粒本身的认知将被其它微粒所模仿。

PSO算法使用如下心理学假设:在寻求一致的认知过程中,个体往往记住自身的信念,并同时考虑同事们的信念。当其察觉同事的信念较好的时候,将进行适应性地调整。

标准PSO的算法流程如下:

a). 初始化一群微粒(群体规模为m),包括随机的位置和速度;

b). 评价每个微粒的适应度;

c). 对每个微粒,将它的适应值和它经历过的最好位置pbest的作比较,如果较好,则将其作为当前的最好位置pbest;

d). 对每个微粒,将它的适应值和全局所经历最好位置gbest的作比较,如果较好,则重新设置gbest的索引号;

e). 根据方程(1)变化微粒的速度和位置;

f). 如未达到结束条件(通常为足够好的适应值或达到一个预设最大代数Gmax),回到b)。

算法参数

PSO参数包括:群体规模m,惯性权重w,加速常数c1和c2,最大速度Vmax,最大代数Gmax。

Vmax决定在当前位置与最好位置之间的区域的分辨率(或精度)。如果Vmax太高,微粒可能会飞过好解,如果Vmax太小,微粒不能进行足够的探索,导致陷入局部优值。该限制有三个目的:防止计算溢出;实现人工学习和态度转变;决定问题空间搜索的粒度。

惯性权重w使微粒保持运动的惯性,使其有扩展搜索空间的趋势,有能力探索新的区域。

加速常数c1和c2代表将每个微粒推向pbest和gbest位置的统计加速项的权重。低的值允许微粒在被拉回来之前可以在目标区域外徘徊,而高的值导致微粒突然的冲向或者越过目标区域。

如果没有后两部分,即c1 = c2 = 0,微粒将一直以当前的速度飞行,直到到达边界。由于它只能搜索有限的区域,将很难找到好的解。

如果没有第一部分,即w = 0,则速度只取决于微粒当前的位置和它们历史最好位置pbest和gbest,速度本身没有记忆性。假设一个微粒位于全局最好位置,它将保持静止。而其它微粒则飞向它本身最好位置pbest和全局最好位置gbest的加权中心。在这种条件下,微粒群将统计的收缩到当前的全局最好位置,更象一个局部算法。

在加上第一部分后,微粒有扩展搜索空间的趋势,即第一部分有全局搜索的能力。这也使得w的作用为针对不同的搜索问题,调整算法全局和局部搜索能力的平衡。

如果没有第二部分,即c1 = 0,则微粒没有认知能力,也就是“只有社会(social-only)”的模型。在微粒的相互作用下,有能力到达新的搜索空间。它的收敛速度比标准版本更快,但是对复杂问题,比标准版本更容易陷入局部优值点。

如果没有第三部分,即c2 = 0,则微粒之间没有社会信息共享,也就是“只有认知(cognition-only)”的模型。因为个体间没有交互,一个规模为m的群体等价于m个单个微粒的运行。因而得到解的几率非常小。

另外不错的文章链接如下:
https://blog.csdn.net/weixin_40679412/article/details/8057185
https://blog.csdn.net/limin_yu/article/details/80475780
代码都是可以运行的 放心使用!
https://blog.csdn.net/zqx951102/article/details/87912633
https://blog.csdn.net/a19990412/article/details/78260705 比较详细讲解的博客

你可能感兴趣的:(Matlab,机器学习,考研,计算机,研究生)