在工作中,我们总会遇到一些接口使用RSA加密和签名来处理的请求参数,那么遇到这个问题的时候,第一时间当然是找开发要加解密的方法,但是开发给加解密代码,大多数情况都是java,c++,js等语言实现的,加解密的代码虽然有了,但是咱们身为一个测试,使用python做的自动化,并不是什么语言都会。
Python接口自动化测试:https://www.bilibili.com/video/BV16G411x76E/
这个时候就会比较尴尬了,看着这一团加解密的代码,自己却不知从何下手,再去找开发给写个python版本的,开发估计不一定搭理你,就算搭理你,开发也未必会python,那么今天咱们就来讲讲如何通过python来实现RSA加解密和签名
RSA算法简介
RSA加密算法是一种非对称加密算法,加密的秘钥是由公钥和私钥两部分组成秘钥对,公钥用来加密消息,私钥用来对消息进行解密,公钥是公开的,私钥则是用户自己保留的,由于公钥是公开的,那么任何人只要获取到公钥,都可以使用公钥来加密发送伪造内容。
出于安全性考虑,在发送消息之前我们可以使用RSA来签名,签名使用私钥来进行签名,使用公钥来进行验签,通过签名我们可以确保用户身份的唯一性,从而提高安全性。
加密和签名的区别
加密:
比方现在有两个人A和B,A要给B传递机密的信息,为了避免信息泄露,B事先通过RSA加密算法生成了一对秘钥,并且将公钥事先给到A,私钥则自己保留,A给B传递消息的时候,先使用B给的公钥对消息进行加密,然后再将消息传递给B,B拿到加密后的消息,可以通过私钥对消息进行解密,消息在传递过程中就算被他人获取了也没关系,没有私钥就没办法对消息进行解密。
但是这个时候还有一个问题,公钥一般都是公开的,会同时给到多个人,那么如果这个时候还有一个人C,获取到了这个公钥,他通过公钥对消息进行加密,想冒充A来给B发信息,那么B接受到信息之后,能够通过私钥来对消息进行解密,但是无法确认这个信息到底是不是A发的(有可能是别拿的公钥加密发的),为了区分发送者的身份,那么这个时候我们就要用到签名。
签名:
虽然我们通过加密能够确保发送的消息不被泄密,但是却无法区分发送者的身份,A用户为了区分自己的身份,同样也生成了一对秘钥,事先将公钥给到B,发送消息的时候,先用B给的公钥对消息进行加密,然后用A自己的私钥生成签名,最后将加密的消息和签名一起发过去给B,B接收到A发送的数据之后,首先使用A用户的公钥对签名信息进行验签,确认身份信息,如果确认是A用户,然后再使用自己的私钥对加密消息进行解密。
A的消息通过加密和签名处理之后,再发送出去给B,就算被人截获了,也没有关系,没有B的私钥无法对消息进行解密,就算获取A的公钥,想要发送伪造信息,没有A私钥也无法进行签名。同样B给A回复消息的时候,可以通过B的公钥进行加密,然后使用自己的私钥生成签名,A接收到数据化使用同样的方式进行解密验证身份。 这样一来就能够做到万无一失。
python实现RSA加解密和签名加解签
使用python来实现RSA加密与签名,使用的第三方库是Crypto:
1、生成秘钥对
在这边为了方便演示,咱们先手动生成一个密钥对(项目中的秘钥对由开发来生成,会直接给到咱们)
生成秘钥对的时候,可以指定生成秘钥的长度,一般推荐使用1024bit, 1024bit的rsa公钥,加密数据时,最多只能加密117byte的数据),数据量超过这个数,则需要对数据进行分段加密,但是目前1024bit长度的秘钥已经被证明了不够安全,尽量使用2048bit长度的秘钥。2048bit长度的秘钥,最多245byte长度的数据
计算公式如下:
秘钥长度/8-11 = 最大加密量(单位:byte)
下面生成一对1024bit的秘钥
from Crypto import Random
from Crypto.PublicKey import RSA
# 伪随机数生成器
random_gen = Random.new().read
# 生成秘钥对实例对象:1024是秘钥的长度
rsa = RSA.generate(1024, random_gen)
# 获取公钥,保存到文件
private_pem = rsa.exportKey()
with open('private.pem', 'wb') as f:
f.write(private_pem)
# 获取私钥保存到文件
public_pem = rsa.publickey().exportKey()
with open('public.pem', 'wb') as f:
f.write(public_pem)
2、加密与解密
公钥加密:
import base64
from Crypto.PublicKey import RSA
from Crypto.Cipher import PKCS1_v1_5
msg = "待加密明文内容"
# 读取文件中的公钥
key = open('public.pem').read()
publickey = RSA.importKey(key)
# 进行加密
pk = PKCS1_v1_5.new(publickey)
encrypt_text = pk.encrypt(msg.encode())
# 加密通过base64进行编码
result = base64.b64encode(encrypt_text)
print(result)
私钥解密:
import base64
from Crypto.PublicKey import RSA
from Crypto.Cipher import PKCS1_v1_5
# 密文
msg='bAlnUNEJeDLnWikQs1ejwqPTo4qZ7RWxgFwoO4Bfg3C7EY+1HN5UvJYJ2h6047K6vNjG+TiIxc0udTR7a12MivSA+DwoGjwFIb25u3zc+M8KTCaCT5GdSumDOto2tsKYaVDKCPZpdwYdzYwlVijr6cPcchQTlD1yfKk2khhNchU='
# base64解码
msg = base64.b64decode(msg)
# 获取私钥
privatekey = open('private.pem').read()
rsakey = RSA.importKey(privatekey)
# 进行解密
cipher = PKCS1_v1_5.new(rsakey)
text = cipher.decrypt(msg, 'DecryptError')
# 解密出来的是字节码格式,decodee转换为字符串
print(text.decode())
分段加密和解密:
上面生成秘钥的时候提到过在我们加密的时候,如果数据长度超过了当前秘钥的所能处理最大长度,则需要进行分段加密。
分段加密:通俗易懂的讲就是把原来一长串的数据,分割成多段,每段的大小控制在秘钥的最大加密数量之内,加密完了之后再把数据进行拼接。
分段解密:经过分段加密的数据,在进行解密的时候我们也要将它进行分成多段,然后解密之后再进行拼接就能得到原来的数据内容。
分段加密和解密的代码如下:
import base64
from Crypto.PublicKey import RSA
from Crypto.Cipher import PKCS1_v1_5
def cipher(msg):
"""
公钥加密
:param msg: 要加密内容
:return: 加密之后的密文
"""
# 获取公钥
key = open('public.pem').read()
publickey = RSA.importKey(key)
# 分段加密
pk = PKCS1_v1_5.new(publickey)
encrypt_text = []
for i in range(0,len(msg),100):
cont = msg[i:i+100]
encrypt_text.append(pk.encrypt(cont.encode()))
# 加密完进行拼接
cipher_text = b''.join(encrypt_text)
# base64进行编码
result = base64.b64encode(cipher_text)
return result.decode()
def decrypt(msg):
"""
私钥进行解密
:param msg: 密文:字符串类型
:return: 解密之后的内容
"""
# base64解码
msg = base64.b64decode(msg)
# 获取私钥
privatekey = open('private.pem').read()
rsakey = RSA.importKey(privatekey)
cipher = PKCS1_v1_5.new(rsakey)
# 进行解密
text = []
for i in range(0,len(msg),128):
cont = msg[i:i+128]
text.append(cipher.decrypt(cont,1))
text = b''.join(text)
return text.decode()
签名和验签
私钥签名:
from Crypto.Hash import SHA
from Crypto.Signature import PKCS1_v1_5 as Sig_pk
from Crypto.PublicKey import RSA
import base64
# 待签名内容
name = "musen"
# 获取私钥
key = open('private.pem', 'r').read()
rsakey = RSA.importKey(key)
# 根据sha算法处理签名内容 (此处的hash算法不一定是sha,看开发)
data = SHA.new(name.encode())
# 私钥进行签名
sig_pk = Sig_pk.new(rsakey)
sign = sig_pk.sign(data)
# 将签名后的内容,转换为base64编码
result = base64.b64encode(sign)
# 签名结果转换成字符串
data = result.decode()
print(data)
公钥验签:
from Crypto.Hash import SHA
from Crypto.Signature import PKCS1_v1_5 as Sig_pk
from Crypto.PublicKey import RSA
import base64
# 签名之前的内容
name = "musen"
# 签名数据
data="X3Gg+wd7UDh4X8ra+PGCyZFUrG+6jDeQt6ajMA0EjwoDwxlddLzYoS4dtjQ2q5WCcRhxcp8fjEyoPXBmJE9rMKDjEIeE/VO0sskbJiO65fU8hgcqdWdgbVqRryhOw+Kih+I6RIeNRYnOB8GkGD8Qca+n9JlOELcxLRdLo3vx6dw="
# base64解码
data = base64.b64decode(data)
# 获取公钥
key = open('public.pem').read()
rsakey = RSA.importKey(key)
# 将签名之前的内容进行hash处理
sha_name = SHA.new(name.encode())
# 验证签名
signer = Sig_pk.new(rsakey)
result = signer.verify(sha_name, data)
# 验证通过返回True 不通过返回False
print(result)
下面是我整理的2023年最全的软件测试工程师学习知识架构体系图 |
有了坚强,你就有了战胜一切的勇气,你就有了生命的战斗力,这才是你活下去的理由。坚强的活着,你的理想,你的追求,才有了最终成为现实的渴望。
你可以一辈子不登山,但你心中一定要有座山,它会使你总往高处爬,它会使你总有个奋斗的方向,它会使你任何一刻抬起头,都能看到自己希望。
低头不是认输,是要看清自己脚下的路,仰头不是骄傲,是为了看更大的天!如果你在本该努力的年纪选择安逸,那么你将一败涂地。