[内核内存] slab分配器4---kmem_cache_init_late函数源码详解

slab系统初始化过程中,待所有cpu都完成初始化后,通过调用kmem_cache_init_late来函数完善cache_chain上每个struct kmem_cache实例的cpu缓存机制(包括cpu本地高速缓存和每个节点上的cpu共享缓存shared cache)

kmem_cache_init_late()
 |---list_for_each_entry(cachep, &slab_caches, list)//遍历slab_caches全局链表中每个struct kmem_cache实例
 		enable_cpucache(cachep, GFP_NOWAIT)//对每个struct kmem_cache实例缓存机制进行完善
 			|--->cache_random_seq_create()//初始化struct kmem_cache实例num成员
 			|--->计算并设置struct kmem_cache实例的limit,batchcount,shared成员
 			|--->do_tune_cpucache()//struct kmem_cache实例缓存机制的完善和其node成员数组中数组项的初始化
 				 	|--->__do_tune_cpucache()
 						|--->alloc_kmem_cache_cpus()//分配新的本地高速缓存区域(从Per_cpu area分配)
     			    	|--->将kmem_cache实例的cpu_cache指向新分配的本地高速缓存区域(Per_CPU内存空间)
 						|---for_each_online_cpu(cpu)//遍历每个cpu
 					  	   	   	free_block()//释放对应cpu旧的本地缓存中缓存的slab obj到对应的slab链表中
     					|--->free_percpu()//释放旧的Per_CPU变量,struct kmem_cache实例的高速缓存cpu_cache
 					  	|--->setup_kmem_cache_nodes()//初始化node数组中每个kmem_cache_nod实例(共享缓存区域														 更新和相关成员初始化)
 					  	     	|---for_each_online_node(node)//遍历每个内存节点
										setup_kmem_cache_node()//对kmem_cache_nod实例进初始化
     										|--->alloc_arraycache()//为当前节点共享缓存区域分配空间
                             				|--->将kmem_cache_node实例的shared成员指向新分配的共享缓存空间
                             			 	|--->init_cache_node()//初始化kmem_cache_node实例的的3个slab链																	 表等
// mm/slab.c
/*
 *1.完善全局链表slab_caches上所有struct kmem_cache实例的缓存机制:
 *	  根据slab obj大小,给本地cpu高速缓存和每个节点shared cache重新分配内存空间,并释放旧缓存缓存的
 *    slab obj(free_block)和旧缓存本身(kfree))
 *2.初始化全局链表slab_caches上所有struct kmem_cache实例的node数组中每个struct kmem_cache_node实例的 
 *  相关数据(主要是每个内存节点中3种类型slab 链表的初始化)
 */
void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

	slab_state = UP;

	/* 6) resize the head arrays to their final sizes */
	mutex_lock(&slab_mutex);
    //遍历slab_caches上所有的slab cache描述符(struct kmem_cache结构体实例)
	list_for_each_entry(cachep, &slab_caches, list)
        /*
         *完善当前slab cache描述符的cpu高速缓存机制,并对slab cache描述符的node成员中的每个struct kmem_cache_node
         *实例进行初始化操作.
         *1.对本地cpu高速缓存(cachep->cpu_cache),通过slab obj的大小重新计算array_cache每个成员的
         *  值,然后为每个cpu重新分配一个array_cache实例(每cpu变量),并替换旧的arry_cache。
         *2.若是NUMA结构,完善cpu共享高速缓存机制(分配足够的共享array_cache实例并完成地址关联).
         *3.为slab cache描述符每个节点对应的struct kmem_cache_node实例的相关成员进行初始化操作,主要是完成3个
         *  slab链表的初始化
         */
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
	mutex_unlock(&slab_mutex);

	/* Done! */
	slab_state = FULL;

#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
	 * node.
	 *
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
	 */
}   
/* Called with slab_mutex held always */
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
{
	int err;
	int limit = 0;
	int shared = 0;
	int batchcount = 0;
	//
	err = cache_random_seq_create(cachep, cachep->num, gfp);
	if (err)
		goto end;
	//判断该slab cache描述符是否属于某一个memcg组,是的画,用该组root节点对应的数据进行初始化
	if (!is_root_cache(cachep)) {
		struct kmem_cache *root = memcg_root_cache(cachep);
		limit = root->limit;
		shared = root->shared;
		batchcount = root->batchcount;
	}
	//找到memcg组,直接完成了初始化设置,不许要根据obj大小进行成员值预估
	if (limit && shared && batchcount)
		goto skip_setup;
	/*
	 * The head array serves three purposes:
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
	 * - reduce the number of linked list operations on the slab and
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
    // 根据对象(slab obj)的大小计算local cache中对象的数量 
	if (cachep->size > 131072)
		limit = 1;
	else if (cachep->size > PAGE_SIZE)
		limit = 8;
	else if (cachep->size > 1024)
		limit = 24;
	else if (cachep->size > 256)
		limit = 54;
	else
		limit = 120;

	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 * 多核下设置共享本地缓存实例的个数(struct kmem_cache的shared成员),该slab描述符每个节点的共享缓存中最大
	 * obj数量为cachep->shared*batchcount
	 */
	shared = 0;
	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
		shared = 8;
	batchcount = (limit + 1) / 2;
skip_setup:
    /*
     *根据前面计算出的limit, batchcount, shared值,为当前slab cache缓存更新本地cpu高速缓存和设置共享cpu高速缓存
     */
	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
end:
	if (err)
		pr_err("enable_cpucache failed for %s, error %d\n",
		       cachep->name, -err);
	return err;
}
/*
 *(1)设置slab cache描述符的本地cpu高速缓存cpu_cache(每cpu变量,是个数组,数组中每个元素对应每个cpu):
 *	 struct kmem_cache的cpu_caches数组中的每个成员需要更新成根据slab obj实际大小计算出来的新struct 
 *   array_cache实例,同时将旧的固定大小的struct array_cache释放
 *(2)设置slab cache描述符的共享cpu高速缓存:
 * 		a.设置struct kmem_cache的shared值
 *		b.设置struct kmem_cache的node数组成员中每个struct kmem_cache_node对应节点上的cpu共享缓存数组.
 *		   就是跟给该slab cache缓存对应的每个节点分配足够多的struct arrary_cache实例
 *		c.设置struct kmem_cache的node数组成员中每个struct kmem_cache_node实例对应节点的3个slab链表		
 */
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared, gfp_t gfp)
{
	int ret;
	struct kmem_cache *c;

	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);

	if (slab_state < FULL)
		return ret;

	if ((ret < 0) || !is_root_cache(cachep))
		return ret;

	lockdep_assert_held(&slab_mutex);
	for_each_memcg_cache(c, cachep) {
		/* return value determined by the root cache only */
		__do_tune_cpucache(c, limit, batchcount, shared, gfp);
	}

	return ret;
}
static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared, gfp_t gfp)
{
	struct array_cache __percpu *cpu_cache, *prev;
	int cpu;
	// 根据limit, batchcount数值,为每个cpu构建新的array_cache实例并存储在cpu_cache数组
	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
	if (!cpu_cache)
		return -ENOMEM;

	//旧的固定大小的array_cache实例数组
    prev = cachep->cpu_cache;
    //将根据slab obj大小计算出来的新本地cpu高速缓存赋值给slab cache描述符的cpu_cache成员
	cachep->cpu_cache = cpu_cache;
    //各个cpu上的每cpu变量数据同步(cachep->cpu_cache更新)
	kick_all_cpus_sync();

	check_irq_on();
    //更新该slab cache描述符中与本地cpu高速缓存有关的成员数据
	cachep->batchcount = batchcount;
	cachep->limit = limit;
	cachep->shared = shared;

	if (!prev)
		goto setup_node;
	/*
	 *此循环就是将旧的本地cpu高速缓存中缓存的slab obj释放给其slab系统.因为slab系统初始化时由于每个本地高
	 *速缓存对应的avail为0,所以此处可被忽略。
	 */
	for_each_online_cpu(cpu) {
		LIST_HEAD(list);
		int node;
		struct kmem_cache_node *n;
		struct array_cache *ac = per_cpu_ptr(prev, cpu);

		node = cpu_to_mem(cpu);
		n = get_node(cachep, node);
		spin_lock_irq(&n->list_lock);
		free_block(cachep, ac->entry, ac->avail, node, &list);
		spin_unlock_irq(&n->list_lock);
		slabs_destroy(cachep, &list);
	}
    //将旧的cpu本地高速缓存这一Per_CPU变量释放(释放到每个cpu的Per_CPU area)
	free_percpu(prev);

setup_node:
	return setup_kmem_cache_nodes(cachep, gfp);//分配lab cache描述每个节点对应的共享缓存区域,然后将每个节点对												 应的struct kmem_cache_node实例成员进行初始化。
}
// mm/slab.c
/*This initializes kmem_cache_node or resizes various caches for all nodes*/
static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
{
    ......
    //遍历每个节点,并给每个节点的本地cpu高速缓存进行更新
    for_each_online_node(node) {
		ret = setup_kmem_cache_node(cachep, node, gfp, true);
    }
    ......
}

/*

 *给slab cache描述符node数组成员中的每个struct kmem_cache_node实例进行初始化,主要工作:
 * 1.共享高速缓存shared成员进行内存空间分配(缓存的entry数组长度cachep->shared*cachep->batchcount)
 * 2.3种类型slab链表的初始化。
 */
static int setup_kmem_cache_node(struct kmem_cache *cachep,
				int node, gfp_t gfp, bool force_change)
{
	int ret = -ENOMEM;
	struct kmem_cache_node *n;
	struct array_cache *old_shared = NULL;
	struct array_cache *new_shared = NULL;
	struct alien_cache **new_alien = NULL;
	LIST_HEAD(list);

	if (use_alien_caches) {
		new_alien = alloc_alien_cache(node, cachep->limit, gfp);
		if (!new_alien)
			goto fail;
	}
	//多cpu,slab cache描述符需要给每个内存节点分配一个共享cpu缓存区域
	if (cachep->shared) {
        /*
         *每个节点分配的共享缓存区域最多能缓存cachep->shared * cachep->batchcount个slab obj,分配对应空间,并
         *将虚拟地址记录到new_shared上
         */
		new_shared = alloc_arraycache(node,
			cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
		if (!new_shared)
			goto fail;
	}
	/*
	 *1.对本slab cache描述符node数组成员中每个struct kmem_cache_node实例的free_limit成员进行初始化(
	 *   free_limit表示该slab cache描述在对应节点中空闲obj的数量上限,超过该值就会将一定数量的slab obj释放到伙
	 *   伴系统的空闲链表中)
	 *2.对本slab cache描述符node数组成员中每个struct kmem_cache_node实例的3个类型slab链表进行初始化。
	 */
	ret = init_cache_node(cachep, node, gfp);
	if (ret)
		goto fail;

	//获取本slab cache描述符cachep对应节点node的struct kmem_cache_node的描述符
    n = get_node(cachep, node);
	spin_lock_irq(&n->list_lock);
    /*
     *释放slab cache描述符管理的每个内存节点旧的cpu共享高速缓存中缓存的slab obj,释放到对应的slab链表中,就是释放
     *n->shared->entry数组中每个数组项指向的slab obj对象.
     */
	if (n->shared && force_change) {
		free_block(cachep, n->shared->entry,
				n->shared->avail, node, &list);
		n->shared->avail = 0;
	}
    /*
    *将新新分配并初始化的共享cpu缓存空间赋值给slab描述符对应节点的struct kmem_cache_node实例的shared成
    *员
    */
	if (!n->shared || force_change) {
		old_shared = n->shared;
		n->shared = new_shared;
		new_shared = NULL;
	}

	if (!n->alien) {
		n->alien = new_alien;
		new_alien = NULL;
	}

	spin_unlock_irq(&n->list_lock);
	slabs_destroy(cachep, &list);

	/*
	 * To protect lockless access to n->shared during irq disabled context.
	 * If n->shared isn't NULL in irq disabled context, accessing to it is
	 * guaranteed to be valid until irq is re-enabled, because it will be
	 * freed after synchronize_sched().
	 */
	if (old_shared && force_change)
		synchronize_sched();
fail:
    //收尾工作释放旧的struct array_cache(释放到对应slab系统的本地高速缓存中)
	kfree(old_shared);
	kfree(new_shared);
	free_alien_cache(new_alien);

	return ret;
}

ps:

  1. 上面代码中free_block和kfree函数区别:
    1. free_block函数是把struct array_cache实例中的avail个entry数组指向的slab obj释放到对应的slab系统中(对应节点的所属的slab链表上)
    2. kfree函数基本同于free_block,但kfree将struct array_cache的slab obj释放到对应slab系统的每cpu高速缓存中.

你可能感兴趣的:(linux内存,slab机制,linux内核内存,arm64)