【Linux高性能服务器编程】信号处理方法之统一事件源

目录

  • 为什么要用统一事件源
  • 统一事件源的概念
  • 统一事件源的应用


为什么要用统一事件源

信号是一种异步事件:信号处理函数和程序的主循环是两条不同的执行路径。即当进程收到信号时,操作系统会中断进程当前的正常流程,转而进入信号处理函数去处理信号,完成后再返回中断的地方继续执行。

很显然,信号处理函数需要尽可能地快速执行完毕,以确保该信号不会被屏蔽太久。因为为了避免信号竞态条件的发生,信号处理期间系统不会再次触发它。

解决方法:
一种典型的解决方法是:把信号的主要处理逻辑放到程序的主循环中,当信号处理函数被触发时,它只是简单的通知主循环程序接收到信号,并把信号值传递给主循环,主循环再根据接收到的信号执行目标信号对应的逻辑代码。

信号处理函数通常使用管道来将信号“传递”给主循环的:信号处理函数往管道的写端写入信号值,主循环则从管道的读端读出信号值。那么主循环怎么知道管道上何时有数据可读呢?这很简单,我们只需要使用I/O复用系统调用来监听管道的读端文件描述符上的可读事件。如此一来,信号事件就能和其他I/O事件一样被处理了。

统一事件源的概念

统一事件源,即将信号和其他事件一样进行处理。

具体就是信号处理函数使用管道将信号传递给主循环,信号处理函数往管道的写端写入信号值,主循环则从管道的读端读出信号值,使用I/O复用系统调用来监听管道读端的可读事件,这样信号事件与其他文件描述符都可以通过epoll来监测,从而实现统一处理。

很多优秀的I/O框架库和后台服务器程序都统一处理信号和I/O事件,比如Libevent I/O 框架库和 xinetd 超级服务。以下是一个统一事件源的简单实现。

统一事件源的应用

信号处理函数:

//信号处理函数
void sig_handler(int sig)
{
    //保留原来的errno,在函数最后恢复,以保证函数的可重入性
    int save_errno = errno;
    int msg = sig;
    send(pipefd[1], (char* )&msg, 1, 0);
    errno = save_errno;
}

这里信号处理的方式只是通过管道向主循环发生信号,将信号交给主喜欢出现进行处理,以达到统一事件源的目的。

添加信号到信号处理函数:

void addsig(int sig)
{
	//创建sigaction结构体变量
    struct sigaction sa;
    memset(&sa, 0, sizeof(sa));
    //信号处理函数中仅仅发送信号值,不做对应逻辑处理
    sa.sa_handler = sig_handler;
    sa.sa_flags |= SA_RESTART;
    //将所有信号添加到信号集中
    sigfillset(&sa.sa_mask);
    //执行sigaction函数
    assert(sigaction(sig, &sa, nullptr) != -1);
}

这里使用了 sigaction 系统调用来设置信号处理函数,相比于 signal 系统调用具有更强的健壮性。

信号通知逻辑:

  1. 使用socketpair创建管道,其中写端由信号处理函数写入信号值,主循环程序通过 epoll I/O复用监视读事件就绪时从管道的读端读取信号。
  2. 这里主要设置了对SIGTERM(kill -15)和SIGTINT(ctrl + C) 信号的处理,通过struct sigaction结构体和sigaction系统调用注册对信号的捕捉和处理。
  3. 利用epoll 监测管道读端的读事件就绪。
  4. 当主循环收到这两个信号时安全的退出程序。

具体逻辑代码如下:

epoll_event events[MAX_EVENT_NUMBER];
int epollfd = epoll_create(5);
assert(epollfd != -1);

addfd(epollfd, listenfd);

// 使用 socketpair 创建管道,注册 pipefd[0] 上的可读事件
ret = socketpair(AF_UNIX, SOCK_STREAM, 0, pipefd);
assert(ret != -1);

setNonBlock(pipefd[1]);
addfd(epollfd, pipefd[0]);

//设置一些信号的处理函数
addsig(SIGHUP);
addsig(SIGCHLD);
addsig(SIGTERM);
addsig(SIGINT);

bool stop_server = false;
while (!stop_server)
{
    int number = epoll_wait(epollfd, events, MAX_EVENT_NUMBER, -1);
    if(number < 0 && errno != EINTR)
    {
        printf("epoll wait failure!\n");
        break;
    }

    for(int i = 0; i < number; ++i)
    {
        int sockfd = events[i].data.fd;
        //如果就绪的文件描述符是listenfd, 则处理新连接
        if(sockfd == listenfd)
        {
            sockaddr_in peer;
            socklen_t len = sizeof(peer);

            int connfd = accept(listenfd, (sockaddr*)&peer, &len);
            addfd(epollfd, connfd);
        }
        //如果就绪的文件描述符是pipefd[0],就处理信号
        else if(sockfd == pipefd[0] && (events[i].events & EPOLLIN))
        {
            int sig;
            char signals[1024];
            ssize_t s = recv(pipefd[0], signals, sizeof(signals), 0);
            if(s == -1)
            {
                continue;
            }
            else if(s == 0)
            {
                continue;
            }
            else
            {
                //每个信号占一个字节,所以按照字节来逐个接收信号。此处以SIGTERM为例,来安全的终止服务器程序:
                for(int i = 0; i < s; ++i)
                {
                    switch (signals[i])
                    {
                    case SIGCHLD:
                    case SIGHUP:
                    {
                        continue;
                    }
                    case SIGTERM:
                    case SIGINT:
                    {
                        stop_server = true;
                    }
                    default:
                        break;
                    }
                }
            }
        }
        else
        {
            //其他I/O就绪
        }
    }
}

printf("close fds\n");
close(listenfd);
close(pipefd[0]);
close(pipefd[1]);

运行结果:

运行程序,然后启动另一个终端使用pidof查看该程序的PID,然后向该程序发送15号信号,即SIGTERM,可以发现程序安全的

你可能感兴趣的:(Linux学习,服务器,linux,信号处理)