STM32外设之TIM定时器使用及输出比较模式PWM生成,PWM频率和占空比计算,文末有固件库TIM驱动文件的函数讲解

TIM

定时器是stm32单片机中的一个外设,STM32有8个定时器,分别是2个高级定时器TIM1TIM8,4个通用定时器TIM2~5,2个基本定时器TIM67

根据不同型号的单片机,挂载的定时器个数不同,比如C8T6只有TIM1~4,更高级的控制器有更多的定时器。
每当我们学习新外设首先要知道他的时钟源和时钟频率。是挂载在哪条总线上的,方便学习
定时器挂载
1.高级定时器挂载在APB2总线上频率为72MHZ
2.通用和基本定时器挂载在APB1上,时钟频率为36MHZ

我们就拿通用定时器来讲解,因为高级定时器不过就是在通用定时器基础上多了几个功能而已,基本定时器同理。
通用定时器
通用定时器是一个通过可编程预分频器驱动的16位自动装载计数器构成可以用于输入捕获和输出比较,PWM波输出等。
注意:每个定时器都是完全独立的,没有互相共享任何资源。它们可以一起同步操作。
主要功能:
16位向上、向下、向上/向下自动装载计数器
16位可编程(可以实时修改)预分频器,计数器时钟频率的分频系数为1~65536之间的任意数值
每个通用定时器都有四个通道,互不干涉每个通道都可以有多种模式
─ 输入捕获
─ 输出比较
─ PWM生成(边缘或中间对齐模式)
─ 单脉冲模式输出
通用定时器还支持针对定位的增量(正交)编码器和霍尔传感器电路
对于定时器功能很多 ,主要及常用的我们记住上面几个就够用啦。
定时器的核心:时基单元,在配置完时基单元y后,如果想用定时器输出模式,额外再配置一个b输出结构体即可,输入模式同理。
时基单元包含
● 计数器寄存器(TIMx_CNT)
● 预分频器寄存器 (TIMx_PSC)
● 自动装载寄存器 (TIMx_ARR)

预分频器描述
预分频器可以将计数器的时钟频率按1到65536之间的任意值分频。它是基于一个(在TIMx_PSC寄存器中的)16位寄存器控制的16位计数器。

计数器模式
计数器在上面说到三种工作模式 ,向上,向下,中心对齐,然后我们讲一下向上计数,其他都一样哈。
向上计数模式
在向上计数模式中,计数器从0计数到自动加载值(TIMx_ARR计数器的内容),然后重新从0开始
计数并且产生一个计数器溢出事件。
每次计数器溢出时可以产生更新事件,在TIMx_EGR寄存器中(通过软件方式或者使用从模式控制器)设置UG位也同样可以产生一个更新事件。
● 预分频器的缓冲区被置入预装载寄存器的值(TIMx_PSC寄存器的内容)。
● 自动装载影子寄存器被重新置入预装载寄存器的值(TIMx_ARR)
中央对齐模式(向上/向下计数)
在中央对齐模式,计数器从0开始计数到自动加载的值(TIMx_ARR寄存器)−1,产生一个计数器
溢出事件,然后向下计数到1并且产生一个计数器下溢事件;然后再从0开始重新计数。

高级定时器的用途:输入捕获,输出比较,PWM,嵌入死区时间的互补PWM等,比通用定时器多了了两个功能。
时基单元包含:
● 计数器寄存器(TIMx_CNT)
● 预分频器寄存器 (TIMx_PSC)
● 自动装载寄存器 (TIMx_ARR)
● 重复次数寄存器 (TIMx_RCR)

我们说一下PWM输出模式
输出比较模式的配置步骤:

  1. 选择计数器时钟(内部,外部,预分频器)
  2. 将相应的数据写入TIMx_ARR和TIMx_CCRx寄存器中
  3. 如果要产生一个中断请求和/或一个DMA请求,设置CCxIE位和/或CCxDE位。
  4. 选择输出模式,例如当计数器CNT与CCRx匹配时翻转OCx的输出引脚,CCRx预装载未
    用,开启OCx输出且高电平有效,则必须设置OCxM=’011’、OCxPE=’0’、CCxP=’0’和
    CCxE=’1’。
  5. 设置TIMx_CR1寄存器的CEN位启动计数器

PWM 模式

详细了解PWM驱动电机请点击STM32输出PWM波控制电机
看另外一篇文章。

脉冲宽度调制模式可以产生一个由TIMx_ARR寄存器确定频率、由TIMx_CCRx寄存器确定占空比的信号。
预分频器值和重装载寄存器的值是时基单元结构体中可以改的。

TIM_TimeBaseStructure.TIM_Period = arr; //设置在下一个更新事件装入活动的自动重装载寄存器周期的值     
TIM_TimeBaseStructure.TIM_Prescaler =psc; //设置用来作为TIMx时钟频率除数的预分频值  不分频

在TIMx_CCMRx寄存器中的OCxM位写入’110’(PWM模式1)或’111’(PWM模式2),能够独立地设置每个OCx输出通道产生一路P WM。
关于PWM的输出要额外配置一个定时器输出模式的结构体,里卖可选择PWM模式和极性、占空比等信息

TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; //选择定时器模式:TIM脉冲宽度调制模式1

TIM_OC1Init(TIM1, &TIM_OCInitStructure);  //根据TIM_OCInitStruct中指定的参数初始化外设TIMx
TIM_OC4Init(TIM1, &TIM_OCInitStructure);  //根据TIM_OCInitStruct中指定的参数初始化外设TIMx

必须设置TIMx_CCMRx寄存器OCxPE位以使能相应的预装载寄存器,最后还要设置TIMx_CR1寄存器的ARPE位,(在向上计数或中心对称模式中)使能自动重装载的预装载寄存器。

TIM_OC1PreloadConfig(TIM1, TIM_OCPreload_Enable);  //CH1预装载使能     

TIM_OC4PreloadConfig(TIM1, TIM_OCPreload_Enable);  //CH4预装载使能    

TIM_ARRPreloadConfig(TIM1, ENABLE); //使能TIMx在ARR上的预装载寄存器
对于高级定时器输出PWM波的时候,还要额外添加一个函数TIM_CtrlPWMOutputs
TIM_CtrlPWMOutputs(TIM1,ENABLE);    //MOE 主输出使能     高级定时器输出PWM波特殊配置
不要忘了使能时钟:
TIM_Cmd(TIM1, ENABLE);  //使能TIM1

仅当发生一个更新事件的时候,预装载寄存器才能被传送到影子寄存器,因此在计数器开始计
数之前,必须通过设置TIMx_EGR寄存器中的UG位来初始化所有的寄存器。OCx的极性可以通过软件在TIMx_CCER寄存器中的CCxP位设置,它可以设置为高电平有效或
低电平有效。TIMx_CCER寄存器中的CCxE位控制OCx输出使能

PWM频率和占空比计算
对于PWM频率和占空比计算:纯干货,外面没人教你,希望看到这里能给个点赞,收藏不迷路!
频率和占空比可以进行如下设定:
PWM的频率:1秒钟内信号从高电平到底电平再回到高电平的一个次数。
PWM周期=1/频率
PWM的周期:Tout=(PSC+1)(ARR+1)/Tclk
占空比=周期内输出高电平时间/PWM周期=Compare/ARR+1
我们可以直接操控寄存器或者调用固件库提供的函数
把这里学会 以后学习舵机的时候也要用!!!


#define PWM1   TIM1->CCR1  //PA8
#define PWM4   TIM1->CCR4  //PA11

void TIM_SetCompare1(TIM_TypeDef* TIMx, uint16_t Compare1);
void TIM_SetCompare2(TIM_TypeDef* TIMx, uint16_t Compare2);
void TIM_SetCompare3(TIM_TypeDef* TIMx, uint16_t Compare3);
void TIM_SetCompare4(TIM_TypeDef* TIMx, uint16_t Compare4);

看到这里先别走,对于很多小白来说,在学习固件库的过程中,对于官方提供的驱动文件内的函数找不到资料,很关键,这里我为大家搜集了大部分的函数功能,良心up点个赞吧。

void TIM_DeInit(TIM_TypeDef* TIMx);
//恢复缺省配置
void TIM_TimeBaseInit(TIM_TypeDef* TIMx,
TIM_TimeBaseInitTypeDef* TIM_TimeBaseInitStruct);
//时基单元初始化,比较重要,用来配置上图的时基单元,第一个参数TIMx选择某个定时器,
//第二个是结构体,包含配置时基单元的一些参数,
void TIM_TimeBaseStructInit(TIM_TimeBaseInitTypeDef* TIM_TimeBaseInitStruct);
//可把结构体变量赋一个默认值,
void TIM_Cmd(TIM_TypeDef* TIMx, FunctionalState NewState);
//用来使能计数器,对应上图的运行控制,第一个参数选择定时器,第二个NewState新的状态
//即使能还是失能,对应计数器是否运行
void TIM_ITConfig(TIM_TypeDef* TIMx, uint16_t TIM_IT,
FunctionalState NewState);
//用来使能中断输出信号,对应上图中断输出控制,第一个参数选择定时器,第二个选择要
//配置哪个中断输出,第三个新的状态即使能还是失能,ITConfig函数会经常遇到使能外设的中断输出

//以下六个函数对应时基单元的时钟选择部分,可选择RCC内部时钟、ETR外部时钟等四个
void TIM_InternalClockConfig(TIM_TypeDef* TIMx);
//选择内部时钟,参数只有一个
void TIM_ITRxExternalClockConfig(TIM_TypeDef* TIMx,
uint16_t TIM_InputTriggerSource);
//选择ITRx其他定时器时钟,第一个参数选择要配置的定时器,第二个选择要接入
//哪个其他的定时器
void TIM_TIxExternalClockConfig(TIM_TypeDef* TIMx, uint16_t TIM_TIxExternalCLKSource,
uint16_t TIM_ICPolarity, uint16_t ICFilter);
//选择TIx捕获通道的时钟,第一个选择定时器,第二个选择TIx具体的某个引脚,
//第三个和第四个,输出的极性和滤波器,对于外部引脚的波形一般都会有这两个选择,更灵活
void TIM_ETRClockMode1Config(TIM_TypeDef* TIMx, uint16_t TIM_ExtTRGPrescaler,
uint16_t TIM_ExtTRGPolarity,uint16_t ExtTRGFilter);
//选择ETR通过外部时钟模式1输入的时钟,第一个略,第二个外部触发预分频器,可对ETR的
//外部时钟再提前做一个分频,后两个同样是极性和滤波器
void TIM_ETRClockMode2Config(TIM_TypeDef* TIMx, uint16_t TIM_ExtTRGPrescaler,
uint16_t TIM_ExtTRGPolarity, uint16_t ExtTRGFilter);
//同上
void TIM_ETRConfig(TIM_TypeDef* TIMx, uint16_t TIM_ExtTRGPrescaler,
uint16_t TIM_ExtTRGPolarity,uint16_t ExtTRGFilter);
//这个不是用来选择时钟,单独用来配置ETR引脚的预分频器、极性、滤波器这些参数,

时钟源选择就用上面六个函数!!时基单元用TIM_TimeBaseInit函数,中断输出控制用TIM_ITConfig函数,NVIC用外部中断讲过的NVIC_Init函数,运行控制用TIM_Cmd函数,这样初始化基本就可以了!!
下面再来看几个,因为初始化结构体里有很多关键的参数,比如自动重传值和预分频值等,这些参数可能在初始化之后还需要进行修改,如果因为这个还要再调用一次初始化函数太过麻烦!
void TIM_PrescalerConfig(TIM_TypeDef* TIMx, uint16_t Prescaler,
uint16_t TIM_PSCReloadMode);
//用来单独写预分频值,第二个prescaler就是要写入的预分频值,第三个参数写入模式
//预分频器有一个缓冲器,写入的值是在更新事件发生后才有效的,写入模式可选择是
//听从安排在更新事件生效、或者再写入后手动产生一个更新事件,让这个值立刻生效
void TIM_CounterModeConfig(TIM_TypeDef* TIMx, uint16_t TIM_CounterMode);
//用来改变计数器的计数模式,参数countermode选择新的计数器模式
void TIM_ARRPreloadConfig(TIM_TypeDef* TIMx, FunctionalState NewState);
//自动重装器预装功能配置,有预装还是无预装是可以自己选择的,newstate使能还是失能决定了它
void TIM_SetCounter(TIM_TypeDef* TIMx, uint16_t Counter);
//给计数器写入一个值,如果想手动给一个计数值就可调用此函数,
void TIM_SetAutoreload(TIM_TypeDef* TIMx, uint16_t Autoreload);
//给自动重装器写入一个值,如果想手动给一个自动重装值就可调用此函数,
uint16_t TIM_GetCounter(TIM_TypeDef* TIMx);
//获取当前计数器的值,如果想看当前计数器计到哪里了就可调用此函数,
//返回值就是当前计数器的值
uint16_t TIM_GetPrescaler(TIM_TypeDef* TIMx);
//获取当前预分频器的值
FlagStatus TIM_GetFlagStatus(TIM_TypeDef* TIMx, uint16_t TIM_FLAG);
void TIM_ClearFlag(TIM_TypeDef* TIMx, uint16_t TIM_FLAG);
ITStatus TIM_GetITStatus(TIM_TypeDef* TIMx, uint16_t TIM_IT);
void TIM_ClearITPendingBit(TIM_TypeDef* TIMx, uint16_t TIM_IT);
//这四个函数用来获取标志位和清楚位的

二、下面的函数与通用/高级定时器的输出比较功能有关:(运用PWM实操用到了)
void TIM_OC1Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct);
void TIM_OC2Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct);
void TIM_OC3Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct);
void TIM_OC4Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct);
//这四个函数是用结构体来配置输出比较单元的,OC就是Output Compare,可参考输出比较单元博客(4路),第一个TMx选择定时器
//第二个结构体,就是输出比较的那些参数
void TIM_OCStructInit(TIM_OCInitTypeDef* TIM_OCInitStruct);
//这个用来给输出比较结构体赋一个默认值的
void TIM_CtrlPWMOutputs(TIM_TypeDef* TIMx, FunctionalState NewState);
//补充:这个函数仅高级定时器使用,在使用高级定时器输出PWM时需要调用该函数,使能主输出,否则PWM不可正常输出。

以上几个就基本可以配置输出比较了很重要,下面还有一些小功能和运行时更改参数的函数,大多数用的不多了解即可,有兴趣可参考手册,最后一个比较重要:
void TIM_ForcedOC1Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction);
void TIM_ForcedOC2Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction);
void TIM_ForcedOC3Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction);
void TIM_ForcedOC4Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction);
//用来配置强制输出模式,如果在运行中想要暂停输出波形并且强制输出高/低电平可用到。
void TIM_OC1PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload);
void TIM_OC2PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload);
void TIM_OC3PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload);
void TIM_OC4PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload);
//用来配置CCR寄存器的预装功能,即影子寄存器,就是写入的值不会立即生效,而是在更新事件后才会生效。
void TIM_OC1FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast);
void TIM_OC2FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast);
void TIM_OC3FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast);
void TIM_OC4FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast);
//用来配置快速使能,手册中单脉冲模式
void TIM_ClearOC1Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear);
void TIM_ClearOC2Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear);
void TIM_ClearOC3Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear);
void TIM_ClearOC4Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear);
//手册中外部事件时清除REF信号
void TIM_OC1PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity);
void TIM_OC1NPolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCNPolarity);
void TIM_OC2PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity);
void TIM_OC2NPolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCNPolarity);
void TIM_OC3PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity);
void TIM_OC3NPolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCNPolarity);
void TIM_OC4PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity);
//可用来单独设置输出比较的极性的,带N的就是高级定时器里互补通道的配置,OC4没有互补通道,单独设置极性(多用于修改)
//在结构体初始化的函数里也可以设置极性。一般来说结构体里的参数都会有一个单独的函数可对其修改
void TIM_CCxCmd(TIM_TypeDef* TIMx, uint16_t TIM_Channel, uint16_t TIM_CCx);
void TIM_CCxNCmd(TIM_TypeDef* TIMx, uint16_t TIM_Channel, uint16_t TIM_CCxN);
//可用来单独修改输出使能参数
void TIM_SelectOCxM(TIM_TypeDef* TIMx, uint16_t TIM_Channel, uint16_t TIM_OCMode);
//可用来单独更改输出比较模式
void TIM_SetCompare1(TIM_TypeDef* TIMx, uint16_t Compare1);
void TIM_SetCompare2(TIM_TypeDef* TIMx, uint16_t Compare2);
void TIM_SetCompare3(TIM_TypeDef* TIMx, uint16_t Compare3);
void TIM_SetCompare4(TIM_TypeDef* TIMx, uint16_t Compare4);
//可用来单独更改CCR寄存器值,这四个比较重要更改占空比需要用到,不过建议使用TIMx->CCR1直接控制寄存器

添加链接描述

你可能感兴趣的:(STM32,嵌入式软件开发,keil5,stm32,单片机,嵌入式硬件)