复制如下文件,覆盖对应adc.c和adc.h即可
每次采样需要重新配置:
hal_adc_config_channel(myadc, my_adc_Hdl_t);
hal_adc_start();
-------------------------------------------------------------------------------------------
/**************************************************************************************************
Phyplus Microelectronics Limited confidential and proprietary.
All rights reserved.
IMPORTANT: All rights of this software belong to Phyplus Microelectronics
Limited ("Phyplus"). Your use of this Software is limited to those
specific rights granted under the terms of the business contract, the
confidential agreement, the non-disclosure agreement and any other forms
of agreements as a customer or a partner of Phyplus. You may not use this
Software unless you agree to abide by the terms of these agreements.
You acknowledge that the Software may not be modified, copied,
distributed or disclosed unless embedded on a Phyplus Bluetooth Low Energy
(BLE) integrated circuit, either as a product or is integrated into your
products. Other than for the aforementioned purposes, you may not use,
reproduce, copy, prepare derivative works of, modify, distribute, perform,
display or sell this Software and/or its documentation for any purposes.
YOU FURTHER ACKNOWLEDGE AND AGREE THAT THE SOFTWARE AND DOCUMENTATION ARE
PROVIDED AS IS WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY, TITLE,
NON-INFRINGEMENT AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL
PHYPLUS OR ITS SUBSIDIARIES BE LIABLE OR OBLIGATED UNDER CONTRACT,
NEGLIGENCE, STRICT LIABILITY, CONTRIBUTION, BREACH OF WARRANTY, OR OTHER
LEGAL EQUITABLE THEORY ANY DIRECT OR INDIRECT DAMAGES OR EXPENSES
INCLUDING BUT NOT LIMITED TO ANY INCIDENTAL, SPECIAL, INDIRECT, PUNITIVE
OR CONSEQUENTIAL DAMAGES, LOST PROFITS OR LOST DATA, COST OF PROCUREMENT
OF SUBSTITUTE GOODS, TECHNOLOGY, SERVICES, OR ANY CLAIMS BY THIRD PARTIES
(INCLUDING BUT NOT LIMITED TO ANY DEFENSE THEREOF), OR OTHER SIMILAR COSTS.
**************************************************************************************************/
/*******************************************************************************
@file adc.c
@brief Contains all functions support for adc driver
@version 0.0
@date 18. Oct. 2017
@author qing.han
*******************************************************************************/
#include
#include "error.h"
#include "gpio.h"
#include "pwrmgr.h"
#include "clock.h"
#include "adc.h"
#include "log.h"
#include "jump_function.h"
#include "version.h"
#include "rf_phy_driver.h"
typedef struct _adc_Contex_t
{
bool enable;
uint8_t all_channel;
uint8_t chs_en_shadow;
bool continue_mode;
//sysclk_t clk_src;
uint16_t adc_cal_postive;
uint16_t adc_cal_negtive;
adc_Hdl_t evt_handler;
} adc_Ctx_t;
static adc_Ctx_t mAdc_Ctx =
{
.enable = FALSE,
.all_channel = 0x00,
.chs_en_shadow = 0x00,
.continue_mode = FALSE,
.adc_cal_postive = 0xFFF,
.adc_cal_negtive = 0xFFF,
.evt_handler = NULL
};
gpio_pin_e s_pinmap[ADC_CH_NUM] =
{
GPIO_DUMMY, //ADC_CH0 =0,
GPIO_DUMMY, //ADC_CH1 =1,
P11, //ADC_CH1N =2,
P23, //ADC_CH1P =3, ADC_CH1DIFF = 3,
P24, //ADC_CH2N =4,
P14, //ADC_CH2P =5, ADC_CH2DIFF = 5,
P15, //ADC_CH3N =6,
P20, //ADC_CH3P =7, ADC_CH3DIFF = 7,
GPIO_DUMMY, //ADC_CH_VOICE =8,
};
/**************************************************************************************
@fn hal_adc_value
@brief This function process for get adc value
input parameters
@param ADC_CH_e adc_pin: adc pin select;ADC_CH0~ADC_CH7 and ADC_CH_VOICE
output parameters
@param None.
@return ADC value
**************************************************************************************/
static void hal_adc_load_calibration_value(void)
{
uint32_t adc_cal = read_reg(SPIF_RSVD1_ADC_CALIBRATE);
mAdc_Ctx.adc_cal_negtive = (uint16_t)(adc_cal&0x0fff);
mAdc_Ctx.adc_cal_postive = (uint16_t)((adc_cal>>16)&0x0fff);
LOG("AD_CAL[%x %x]\n",mAdc_Ctx.adc_cal_negtive,mAdc_Ctx.adc_cal_postive);
if((mAdc_Ctx.adc_cal_negtive < 0x733) || (mAdc_Ctx.adc_cal_negtive > 0x8cc) ||
(mAdc_Ctx.adc_cal_postive < 0x733) || (mAdc_Ctx.adc_cal_postive > 0x8cc))
{
mAdc_Ctx.adc_cal_negtive = 0xfff;
mAdc_Ctx.adc_cal_postive = 0xfff;
LOG("->AD_CAL[%x %x]\n",mAdc_Ctx.adc_cal_negtive, mAdc_Ctx.adc_cal_postive);
}
}
static void set_sampling_resolution(adc_CH_t channel, bool is_high_resolution,bool is_differential_mode)
{
uint8_t aio = 0;
uint8_t diff_aio = 0;
switch(channel)
{
case ADC_CH1N_P11:
aio = 0;
diff_aio = 1;
break;
case ADC_CH1P_P23:
aio = 1;
diff_aio = 0;
break;
case ADC_CH2N_P24:
aio = 2;
diff_aio = 3;
break;
case ADC_CH2P_P14:
aio = 3;
diff_aio = 2;
break;
case ADC_CH3N_P15:
aio = 4;
diff_aio = 7;
break;
case ADC_CH3P_P20:
aio = 7;
diff_aio = 4;
break;
default:
return;
}
if(is_high_resolution)
{
if(is_differential_mode)
{
subWriteReg(&(AP_AON->PMCTL2_1),(diff_aio+8),(diff_aio+8),0);
subWriteReg(&(AP_AON->PMCTL2_1),diff_aio,diff_aio,1);
}
subWriteReg(&(AP_AON->PMCTL2_1),(aio+8),(aio+8),0);
subWriteReg(&(AP_AON->PMCTL2_1),aio,aio,1);
}
else
{
if(is_differential_mode)
{
subWriteReg(&(AP_AON->PMCTL2_1),(diff_aio+8),(diff_aio+8),1);
subWriteReg(&(AP_AON->PMCTL2_1),diff_aio,diff_aio,0);
}
subWriteReg(&(AP_AON->PMCTL2_1),(aio+8),(aio+8),1);
subWriteReg(&(AP_AON->PMCTL2_1),aio,aio,0);
}
}
static void set_sampling_resolution_auto(uint8_t channel, uint8_t is_high_resolution,uint8_t is_differential_mode)
{
uint8_t i_channel;
adc_CH_t a_channel;
AP_AON->PMCTL2_1 = 0x00;
for(i_channel =MIN_ADC_CH; i_channel<=MAX_ADC_CH; i_channel++)
{
if(channel & BIT(i_channel))
{
a_channel = (adc_CH_t)i_channel;
set_sampling_resolution(a_channel,
(is_high_resolution & BIT(i_channel)),
(is_differential_mode & BIT(i_channel)));
}
}
}
static void set_differential_mode(void)
{
subWriteReg(&( AP_PCRM->ANA_CTL),8,8,0);
subWriteReg(&( AP_PCRM->ANA_CTL),11,11,0);
}
static void disable_analog_pin(adc_CH_t channel)
{
int index = (int)channel;
gpio_pin_e pin = s_pinmap[index];
if(pin == GPIO_DUMMY)
return;
hal_gpio_cfg_analog_io(pin,Bit_DISABLE);
hal_gpio_pin_init(pin,GPIO_INPUT); //ie=0,oen=1 set to imput
hal_gpio_pull_set(pin,GPIO_FLOATING); //
}
static void clear_adcc_cfg(void)
{
mAdc_Ctx.all_channel = 0x00;
mAdc_Ctx.chs_en_shadow = 0x00;
mAdc_Ctx.continue_mode = FALSE;
mAdc_Ctx.evt_handler = NULL;
}
#if 0
static void disable_channel(adc_CH_t ch)
{
switch (ch)
{
case ADC_CH1N_P11:
AP_PCRM->ADC_CTL1 &= ~BIT(20);
break;
case ADC_CH1P_P23:
AP_PCRM->ADC_CTL1 &= ~BIT(4);
break;
case ADC_CH2N_P24:
AP_PCRM->ADC_CTL2 &= ~BIT(20);
break;
case ADC_CH2P_P14:
AP_PCRM->ADC_CTL2 &= ~BIT(4);
break;
case ADC_CH3N_P15:
AP_PCRM->ADC_CTL3 &= ~BIT(20);
break;
case ADC_CH3P_P20:
AP_PCRM->ADC_CTL3 &= ~BIT(4);
break;
}
}
#endif
/// adc
/**************************************************************************************
@fn hal_ADC_IRQHandler
@brief This function process for adc interrupt
input parameters
@param None.
output parameters
@param None.
@return None.
**************************************************************************************/
void __attribute__((used)) hal_ADC_IRQHandler(void)
{
int ch,ch2,status =0,n;
uint16_t adc_data[MAX_ADC_SAMPLE_SIZE-2];
status = GET_IRQ_STATUS;
for (ch = MIN_ADC_CH; ch <= MAX_ADC_CH; ch++)
{
if ((mAdc_Ctx.all_channel & BIT(ch)) &&(status & BIT(ch)))
{
ch2=(ch%2)?(ch-1):(ch+1);
if(mAdc_Ctx.continue_mode == FALSE)
{
AP_ADCC->intr_mask &= ~ BIT(ch); //MASK coresponding channel
mAdc_Ctx.all_channel &= ~BIT(ch);//disable channel
}
for (n = 0; n < (MAX_ADC_SAMPLE_SIZE-3); n++)
{
adc_data[n] = (uint16_t)(read_reg(ADC_CH_BASE + (ch * 0x80) + ((n+2) * 4))&0xfff);
adc_data[n+1] = (uint16_t)((read_reg(ADC_CH_BASE + (ch * 0x80) + ((n+2) * 4))>>16)&0xfff);
}
AP_ADCC->intr_clear = BIT(ch);
if(mAdc_Ctx.enable == FALSE)
continue;
if (mAdc_Ctx.evt_handler)
{
adc_Evt_t evt;
evt.type = HAL_ADC_EVT_DATA;
evt.ch = (adc_CH_t)ch2;
evt.data = adc_data;
evt.size = MAX_ADC_SAMPLE_SIZE-3;
mAdc_Ctx.evt_handler(&evt);
}
}
}
//LOG("> %x\n",mAdc_Ctx.all_channel);
if((mAdc_Ctx.all_channel == 0) && (mAdc_Ctx.continue_mode == FALSE))//
{
hal_adc_stop();
}
}
static void adc_wakeup_hdl(void)
{
NVIC_SetPriority((IRQn_Type)ADCC_IRQn, IRQ_PRIO_HAL);
}
/**************************************************************************************
@fn hal_adc_init
@brief This function process for adc initial
input parameters
@param ADC_MODE_e mode: adc sample mode select;1:SAM_MANNUAL(mannual mode),0:SAM_AUTO(auto mode)
ADC_CH_e adc_pin: adc pin select;ADC_CH0~ADC_CH7 and ADC_CH_VOICE
ADC_SEMODE_e semode: signle-ended mode negative side enable; 1:SINGLE_END(single-ended mode) 0:DIFF(Differentail mode)
IO_CONTROL_e amplitude: input signal amplitude, 0:BELOW_1V,1:UP_1V
output parameters
@param None.
@return None.
**************************************************************************************/
void hal_adc_init(void)
{
hal_pwrmgr_register(MOD_ADCC,NULL,adc_wakeup_hdl);
clear_adcc_cfg();
hal_adc_load_calibration_value();
mAdc_Ctx.enable = TRUE;
}
int hal_adc_clock_config(adc_CLOCK_SEL_t clk)
{
if(mAdc_Ctx.enable == FALSE)
{
return PPlus_ERR_NOT_REGISTED;
}
subWriteReg(&(AP_PCRM->ADC_CTL4),2,1,clk);
return PPlus_SUCCESS;
}
int hal_adc_start(void)
{
uint8_t all_channel2 = (((mAdc_Ctx.chs_en_shadow&0x80)>>1)|\
((mAdc_Ctx.chs_en_shadow&0x40)<<1)|\
((mAdc_Ctx.chs_en_shadow&0x20)>>1)|\
((mAdc_Ctx.chs_en_shadow&0x10)<<1)|\
((mAdc_Ctx.chs_en_shadow&0x08)>>1)|\
((mAdc_Ctx.chs_en_shadow&0x04)<<1));
if(mAdc_Ctx.enable == FALSE)
{
return PPlus_ERR_NOT_REGISTED;
}
//LOG("all_channel2:0x%x\n",all_channel2);
hal_pwrmgr_lock(MOD_ADCC);
JUMP_FUNCTION(ADCC_IRQ_HANDLER) = (uint32_t)&hal_ADC_IRQHandler;
for(int i=MIN_ADC_CH; i<=MAX_ADC_CH; i++)
{
if(all_channel2 & (BIT(i)))
{
switch (i)
{
case ADC_CH1N_P11:
AP_PCRM->ADC_CTL1 |= BIT(20);
break;
case ADC_CH1P_P23:
AP_PCRM->ADC_CTL1 |= BIT(4);
break;
case ADC_CH2N_P24:
AP_PCRM->ADC_CTL2 |= BIT(20);
break;
case ADC_CH2P_P14:
AP_PCRM->ADC_CTL2 |= BIT(4);
break;
case ADC_CH3N_P15:
AP_PCRM->ADC_CTL3 |= BIT(20);
break;
case ADC_CH3P_P20:
AP_PCRM->ADC_CTL3 |= BIT(4);
break;
}
}
}
AP_PCRM->ANA_CTL |= BIT(3);//ENABLE_ADC;
AP_PCRM->ANA_CTL |= BIT(0);//new
NVIC_EnableIRQ((IRQn_Type)ADCC_IRQn); //ADC_IRQ_ENABLE;
AP_ADCC->intr_mask = mAdc_Ctx.all_channel; //ENABLE_ADC_INT;
//disableSleep();
return PPlus_SUCCESS;
}
int hal_adc_config_channel(adc_Cfg_t cfg, adc_Hdl_t evt_handler)
{
uint8_t i;
uint8_t chn_sel;
gpio_pin_e pin,pin_neg;
if(mAdc_Ctx.enable == FALSE)
{
return PPlus_ERR_NOT_REGISTED;
}
if(evt_handler == NULL)
{
return PPlus_ERR_INVALID_PARAM;
}
if((cfg.channel & BIT(0)) || (cfg.channel & BIT(1)))
{
return PPlus_ERR_NOT_SUPPORTED;
}
if((!cfg.channel & BIT(1))&&(cfg.is_differential_mode && (cfg.channel & BIT(1))))
{
return PPlus_ERR_INVALID_PARAM;
}
if(cfg.is_differential_mode != 0)
{
if((cfg.is_differential_mode != 0x80) && (cfg.is_differential_mode != 0x20) && (cfg.is_differential_mode != 0x08))
{
return PPlus_ERR_INVALID_PARAM;
}
}
clear_adcc_cfg();
AP_AON->PMCTL2_1 = 0x00;
AP_PCRM->ANA_CTL &= ~BIT(0);
AP_PCRM->ANA_CTL &= ~BIT(3);
hal_clk_gate_disable(MOD_ADCC);
hal_clk_reset(MOD_ADCC);
mAdc_Ctx.continue_mode = cfg.is_continue_mode;
mAdc_Ctx.all_channel = cfg.channel & 0x03;
for(i=2; i<8; i++)
{
if(cfg.channel & BIT(i))
{
if(i%2)
{
mAdc_Ctx.all_channel |= BIT(i-1);
}
else
{
mAdc_Ctx.all_channel |= BIT(i+1);
}
}
}
mAdc_Ctx.chs_en_shadow = mAdc_Ctx.all_channel;
//LOG("cfg.channel:0x%x\n",cfg.channel);
//LOG("mAdc_Ctx.all_channel:0x%x\n",mAdc_Ctx.all_channel);
if((AP_PCR->SW_CLK & BIT(MOD_ADCC)) == 0)
{
hal_clk_gate_enable(MOD_ADCC);
}
//CLK_1P28M_ENABLE;
AP_PCRM->CLKSEL |= BIT(6);
//ENABLE_XTAL_OUTPUT; //enable xtal 16M output,generate the 32M dll clock
AP_PCRM->CLKHF_CTL0 |= BIT(18);
//ENABLE_DLL; //enable DLL
AP_PCRM->CLKHF_CTL1 |= BIT(7);
//ADC_DBLE_CLOCK_DISABLE; //disable double 32M clock,we are now use 32M clock,should enable bit<13>, diable bit<21>
AP_PCRM->CLKHF_CTL1 &= ~BIT(21);//check
//subWriteReg(0x4000F044,21,20,3);
//ADC_CLOCK_ENABLE; //adc clock enbale,always use clk_32M
AP_PCRM->CLKHF_CTL1 |= BIT(13);
//subWriteReg(0x4000f07c,4,4,1); //set adc mode,1:mannual,0:auto mode
AP_PCRM->ADC_CTL4 |= BIT(4);
AP_PCRM->ADC_CTL4 |= BIT(0);
set_sampling_resolution_auto(cfg.channel, cfg.is_high_resolution,cfg.is_differential_mode);
AP_PCRM->ADC_CTL0 &= ~BIT(20);
AP_PCRM->ADC_CTL0 &= ~BIT(4);
AP_PCRM->ADC_CTL1 &= ~BIT(20);
AP_PCRM->ADC_CTL1 &= ~BIT(4);
AP_PCRM->ADC_CTL2 &= ~BIT(20);
AP_PCRM->ADC_CTL2 &= ~BIT(4);
AP_PCRM->ADC_CTL3 &= ~BIT(20);
AP_PCRM->ADC_CTL3 &= ~BIT(4);
AP_PCRM->ANA_CTL &= ~BIT(23);//disable micbias
if(cfg.is_differential_mode == 0)
{
AP_PCRM->ADC_CTL4 &= ~BIT(4); //enable auto mode
mAdc_Ctx.evt_handler = evt_handler;
for(i=MIN_ADC_CH; i<=MAX_ADC_CH; i++)
{
if(cfg.channel & BIT(i))
{
gpio_pin_e pin = s_pinmap[i];
hal_gpio_pull_set(pin,GPIO_FLOATING);
hal_gpio_ds_control(pin, Bit_ENABLE);
hal_gpio_cfg_analog_io(pin, Bit_ENABLE);
}
}
}
else
{
switch(cfg.is_differential_mode)
{
case 0x80:
pin = P20;
pin_neg = P15;
chn_sel = 0x04;
break;
case 0x20:
pin = P14;
pin_neg = P24;
chn_sel = 0x03;
break;
case 0x08:
pin = P23;
pin_neg = P11;
chn_sel = 0x02;
break;
case 0x02:
pin = P18;
pin_neg = P25;
chn_sel = 0x01;
*(volatile int*)(0x4000F020) = 0x0060;
break;
default:
break;
}
hal_gpio_ds_control(pin, Bit_ENABLE);
subWriteReg(&(AP_PCRM->ANA_CTL),7,5,chn_sel);
set_differential_mode();
//LOG("%d %d %x\n",pin,pin_neg,*(volatile int*)0x40003800);
hal_gpio_pull_set(pin,GPIO_FLOATING);
hal_gpio_pull_set(pin_neg,GPIO_FLOATING);
hal_gpio_cfg_analog_io(pin,Bit_ENABLE);
hal_gpio_cfg_analog_io(pin_neg,Bit_ENABLE);
//LOG("%d %d %x\n",pin,pin_neg,*(volatile int*)0x40003800);
mAdc_Ctx.all_channel = (cfg.is_differential_mode >> 1);
mAdc_Ctx.evt_handler = evt_handler;
}
return PPlus_SUCCESS;
}
int hal_adc_stop(void)
{
int i;
uint8_t all_channel2 = (((mAdc_Ctx.chs_en_shadow&0x80)>>1)|\
((mAdc_Ctx.chs_en_shadow&0x40)<<1)|\
((mAdc_Ctx.chs_en_shadow&0x20)>>1)|\
((mAdc_Ctx.chs_en_shadow&0x10)<<1)|\
((mAdc_Ctx.chs_en_shadow&0x08)>>1)|\
((mAdc_Ctx.chs_en_shadow&0x04)<<1));
if(mAdc_Ctx.enable == FALSE)
{
return PPlus_ERR_NOT_REGISTED;
}
AP_AON->PMCTL2_1 = 0x00;
NVIC_DisableIRQ((IRQn_Type)ADCC_IRQn);
JUMP_FUNCTION(ADCC_IRQ_HANDLER) = 0;
AP_ADCC->intr_clear = 0x1FF;
AP_PCRM->ANA_CTL &= ~BIT(3);
if(g_system_clk != SYS_CLK_DBL_32M)
{
AP_PCRM->CLKHF_CTL1 &= ~BIT(13);
}
for(i = MIN_ADC_CH; i<= MAX_ADC_CH; i++)
{
if(all_channel2 & BIT(i))
{
disable_analog_pin((adc_CH_t)i);
}
}
AP_PCRM->ANA_CTL &= ~BIT(0);//Power down analog LDO
hal_clk_reset(MOD_ADCC);
hal_clk_gate_disable(MOD_ADCC);
clear_adcc_cfg();
//enableSleep();
hal_pwrmgr_unlock(MOD_ADCC);
return PPlus_SUCCESS;
}
#if(SDK_VER_CHIP==__DEF_CHIP_QFN32__)
const unsigned int adc_Lambda[MAX_ADC_CH - MIN_ADC_CH + 1] =
{
4519602,//P11
4308639,//P23
4263287,//P24
4482718,//P14
4180401,//P15
4072069,//P20
};
#elif(SDK_VER_CHIP == __DEF_CHIP_TSOP16__)
const unsigned int adc_Lambda[MAX_ADC_CH - MIN_ADC_CH + 1] =
{
4488156,//P11
4308639,//P23,
4263287,//P24,
4467981,//P14
4142931,//P15
4054721,//P20
};
#endif
float hal_adc_value_cal(adc_CH_t ch,uint16_t* buf, uint32_t size, uint8_t high_resol, uint8_t diff_mode)
{
uint32_t i;
int adc_sum = 0;
volatile float result = 0.0;
uint16_t adc_cal_postive = mAdc_Ctx.adc_cal_postive;
uint16_t adc_cal_negtive = mAdc_Ctx.adc_cal_negtive;
for (i = 0; i < size; i++)
{
adc_sum += (buf[i]&0xfff);
}
result = ((float)adc_sum)/size;
if((adc_cal_postive != 0xfff) && (adc_cal_negtive != 0xfff))
{
float delta = ((int)(adc_cal_postive-adc_cal_negtive))/2.0;
if(ch&0x01)
{
result = (diff_mode) ? ((result-2048-delta)*2/(adc_cal_postive+adc_cal_negtive))
: ((result-delta) /(adc_cal_postive+adc_cal_negtive));
}
else
{
result = (diff_mode) ? ((result-2048-delta)*2/(adc_cal_postive+adc_cal_negtive))
: ((result+delta) /(adc_cal_postive+adc_cal_negtive));
}
}
else
{
result = (diff_mode) ? (float)(result / 2048 -1) : (float)(result /4096);
}
if(high_resol == TRUE)
{
result *= 0.8;
}
else
{
result = (float)result *(float)adc_Lambda[ch-2]*0.8/1000000;
}
return result;
}
----------------------------------------------------------------------------------
/**************************************************************************************************
Phyplus Microelectronics Limited confidential and proprietary.
All rights reserved.
IMPORTANT: All rights of this software belong to Phyplus Microelectronics
Limited ("Phyplus"). Your use of this Software is limited to those
specific rights granted under the terms of the business contract, the
confidential agreement, the non-disclosure agreement and any other forms
of agreements as a customer or a partner of Phyplus. You may not use this
Software unless you agree to abide by the terms of these agreements.
You acknowledge that the Software may not be modified, copied,
distributed or disclosed unless embedded on a Phyplus Bluetooth Low Energy
(BLE) integrated circuit, either as a product or is integrated into your
products. Other than for the aforementioned purposes, you may not use,
reproduce, copy, prepare derivative works of, modify, distribute, perform,
display or sell this Software and/or its documentation for any purposes.
YOU FURTHER ACKNOWLEDGE AND AGREE THAT THE SOFTWARE AND DOCUMENTATION ARE
PROVIDED AS IS WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY, TITLE,
NON-INFRINGEMENT AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL
PHYPLUS OR ITS SUBSIDIARIES BE LIABLE OR OBLIGATED UNDER CONTRACT,
NEGLIGENCE, STRICT LIABILITY, CONTRIBUTION, BREACH OF WARRANTY, OR OTHER
LEGAL EQUITABLE THEORY ANY DIRECT OR INDIRECT DAMAGES OR EXPENSES
INCLUDING BUT NOT LIMITED TO ANY INCIDENTAL, SPECIAL, INDIRECT, PUNITIVE
OR CONSEQUENTIAL DAMAGES, LOST PROFITS OR LOST DATA, COST OF PROCUREMENT
OF SUBSTITUTE GOODS, TECHNOLOGY, SERVICES, OR ANY CLAIMS BY THIRD PARTIES
(INCLUDING BUT NOT LIMITED TO ANY DEFENSE THEREOF), OR OTHER SIMILAR COSTS.
**************************************************************************************************/
/*******************************************************************************
@file adc.h
@brief Contains all functions support for adc driver
@version 0.0
@date 18. Oct. 2017
@author qing.han
*******************************************************************************/
#ifndef __ADC__H__
#define __ADC__H__
#ifdef __cplusplus
extern "C" {
#endif
#include "types.h"
#include "bus_dev.h"
#include "gpio.h"
#define MAX_ADC_SAMPLE_SIZE 32
#define ADC_CH_BASE (0x40050400UL)
#define CLEAR_ADC_INT(n) AP_ADC->intr_clear |= BIT(n)
#define IS_CLAER_ADC_INT_VOICE (AP_ADC->intr_clear & BIT(8))
#define IS_CLAER_ADC_INT(n) (AP_ADC->intr_clear & BIT(n))
#define GET_IRQ_STATUS (AP_ADCC->intr_status & 0x3ff)
#define ENABLE_ADC (AP_PCRM->ANA_CTL |= BIT(3))
#define DISABLE_ADC (AP_PCRM->ANA_CTL &= ~BIT(3))
#define ADC_CLOCK_ENABLE (AP_PCRM->CLKHF_CTL1 |= BIT(13))
#define ADC_CLOCK_DISABLE (AP_PCRM->CLKHF_CTL1 &= ~BIT(13))
#define SPIF_RSVD_AREA_1 (0x1000)
#define pSPIF_RSVD1_ADC_CALIBRATE ((volatile uint32_t*)(SPIF_BASE_ADDR + SPIF_RSVD_AREA_1))
#define SPIF_RSVD1_ADC_CALIBRATE (SPIF_BASE_ADDR + SPIF_RSVD_AREA_1)
/**************************************************************************************
@fn hal_get_adc_int_source
@brief This function process for get adc interrupt source,such as adc channel NO
input parameters
@param None.
output parameters
@param None.
@return adc interrupt source bit loaction(uint8_t)
**************************************************************************************/
/*
ADC note:
There are ten pins which can config as analogy,there are some differences between them.
hardware analogy index:
gpio<11>/aio<0>
gpio<23>/aio<1>/micphone bias reference voltage
gpio<24>/aio<2>
gpio<14>/aio<3>
gpio<15>/aio<4>/micphone bias
gpio<16>/aio<5>/32K XTAL input
gpio<17>/aio<6>/32K XTAL output
gpio<18>/aio<7>/pga in+
gpio<25>/aio<8>
gpio<20>/aio<9>/pga in-
There are six pins which can work in adc single mode.Such as:
ADC_CH0 = 2,ADC_CH1N_P11 = 2,
ADC_CH1 = 3,ADC_CH1P_P23 = 3,
ADC_CH2 = 4,ADC_CH2N_P24 = 4,
ADC_CH3 = 5,ADC_CH2P_P14 = 5,
ADC_CH4 = 6,ADC_CH3N_P15 = 6,
ADC_CH9 = 7,ADC_CH3P_P20 = 7,
There are four pair pins which can work in adc diff mode.Such as:
ADC_CH0DIFF = 1,p18(p) and P25(n)
ADC_CH1DIFF = 3,P23(p) and P11(n)
ADC_CH2DIFF = 5,P14(p) and P24(n)
ADC_CH3DIFF = 7,P20(p) and P15(n)
There are two pins which uses with 32.768K crystal oscillator.
gpio<16>/aio<5>/32K XTAL input
gpio<17>/aio<6>/32K XTAL output
There are four pins which uses as pga,voice and so on.
gpio<23>/aio<1>/micphone bias reference voltage,this pin is selected
gpio<15>/aio<4>/micphone bias
gpio<18>/aio<7>/pga in+
gpio<20>/aio<9>/pga in-
*/
typedef enum
{
ADC_CH0DIFF = 1,/*p18(positive),p25(negative),only works in diff*/
ADC_CH0 = 2,ADC_CH1N_P11 = 2,MIN_ADC_CH = 2,
ADC_CH1 = 3,ADC_CH1P_P23 = 3,ADC_CH1DIFF = 3,/*P23 and P11*/
ADC_CH2 = 4,ADC_CH2N_P24 = 4,
ADC_CH3 = 5,ADC_CH2P_P14 = 5,ADC_CH2DIFF = 5,/*P14 and P24*/
ADC_CH4 = 6,ADC_CH3N_P15 = 6,
ADC_CH9 = 7,ADC_CH3P_P20 = 7,MAX_ADC_CH = 7,ADC_CH3DIFF = 7,/*P20 and P15*/
ADC_CH_VOICE = 8,
ADC_CH_NUM =9,
} adc_CH_t;
enum typedef enum typedef struct _adc_Cfg_t typedef void (*adc_Hdl_t)(adc_Evt_t* pev); extern gpio_pin_e s_pinmap[ADC_CH_NUM]; @brief This function process for adc initial input parameters @param ADC_CH_e adc_pin: adc pin select;ADC_CH0~ADC_CH7 and ADC_CH_VOICE output parameters @param None. @return None. int hal_adc_config_channel(adc_Cfg_t cfg, adc_Hdl_t evt_handler); int hal_adc_clock_config(adc_CLOCK_SEL_t clk); int hal_adc_start(void); int hal_adc_stop(void); void __attribute__((weak)) hal_ADC_IRQHandler(void); float hal_adc_value_cal(adc_CH_t ch,uint16_t* buf, uint32_t size, uint8_t high_resol, uint8_t diff_mode); #ifdef __cplusplus #endif
#define ADC_BIT(ch) (1<
{
HAL_ADC_EVT_DATA = 1,
HAL_ADC_EVT_FAIL = 0xff
};
{
HAL_ADC_CLOCK_80K = 0,
HAL_ADC_CLOCK_160K = 1,
HAL_ADC_CLOCK_320K = 2,
} adc_CLOCK_SEL_t;
{
uint8_t channel;
bool is_continue_mode;
uint8_t is_differential_mode;
uint8_t is_high_resolution;
} adc_Cfg_t;
typedef struct _adc_Evt_t
{
int type;
adc_CH_t ch;
uint16_t* data;
uint8_t size; //word size
} adc_Evt_t;
/**************************************************************************************
@fn hal_adc_init
ADC_SEMODE_e semode: single-end mode and diff mode select; 1:SINGLE_END(single-end mode) 0:DIFF(Diff mode)
IO_CONTROL_e amplitude: input signal amplitude, 0:BELOW_1V,1:UP_1V
**************************************************************************************/
void hal_adc_init(void);
}
#endif