本文将通过Colab平台及MINIST数据集指导你了解Pytorch-lightning的核心组成。
注意:任何的深度学习、机器学习的Pytorch工程都可以转变为lightning结构
虽然说安装Lightning非常的容易,但还是建议大家在本地通过conda来安装Lightning
conda activate my_env
pip install pytorch-lightning
当你运行在在Google Colab上时,需要执行
!pip install pytorch-lightning
当出现上述内容是,代表Lightning已经安装完成。
或者你也可以使用conda命令来安装
conda install pytorch-lightning -c conda-forge
Lightning由以下核心部分组成:
我们通过Model引入这一部分,下面我们将会设计一个三层的神经网络模型
import torch
from torch.nn import functional as F
from torch import nn
from pytorch_lightning.core.lightning import LightningModule
class LitMNIST(LightningModule):
def __init__(self):
super().__init__()
# mnist images are (1, 28, 28) (channels, width, height)
self.layer_1 = torch.nn.Linear(28 * 28, 128)
self.layer_2 = torch.nn.Linear(128, 256)
self.layer_3 = torch.nn.Linear(256, 10)
def forward(self, x):
batch_size, channels, width, height = x.size()
# (b, 1, 28, 28) -> (b, 1*28*28)
x = x.view(batch_size, -1)
x = self.layer_1(x)
x = F.relu(x)
x = self.layer_2(x)
x = F.relu(x)
x = self.layer_3(x)
x = F.log_softmax(x, dim=1)
return x
可以观察到我们的LitMNIST类并不是像Pytorch中继承于torch.nn.Module
类,而是Pytorch-lightning中的LightningModule
类。该类与Pytorch中的torch.nn.Module
类并没有太大的区别,只是增加了一些功能,我们可以像在Pytorch中使用torch.nn.Module
类一样使用它。例如:
net = LitMNIST()
x = torch.randn(1, 1, 28, 28)
out = net(x)
下一步我们添加训练过程training_step,它继承于LightningModule
,其中包含了所有训练过程中的逻辑内容
class LitMNIST(LightningModule):
def training_step(self, batch, batch_idx):
x, y = batch
logits = self(x)
loss = F.nll_loss(logits, y)
return loss
LIghtning运行在dataloders上,以下是数据加载部分的代码:
from torch.utils.data import DataLoader, random_split
from torchvision.datasets import MNIST
import os
from torchvision import datasets, transforms
# transforms
# prepare transforms standard to MNIST
transform=transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))])
# data
mnist_train = MNIST(os.getcwd(), train=True, download=True, transform=transform)
mnist_train = DataLoader(mnist_train, batch_size=64)
我比较推荐采用下面的方式加载数据:
class MNISTDataModule(pl.LightningDataModule):
def __init__(self, batch_size=64):
super().__init__()
self.batch_size = batch_size
def prepare_data(self):
# download only
MNIST(os.getcwd(), train=True, download=True, transform=transforms.ToTensor())
MNIST(os.getcwd(), train=False, download=True, transform=transforms.ToTensor())
def setup(self, stage):
# transform
transform=transforms.Compose([transforms.ToTensor()])
mnist_train = MNIST(os.getcwd(), train=True, download=False, transform=transform)
mnist_test = MNIST(os.getcwd(), train=False, download=False, transform=transform)
# train/val split
mnist_train, mnist_val = random_split(mnist_train, [55000, 5000])
# assign to use in dataloaders
self.train_dataset = mnist_train
self.val_dataset = mnist_val
self.test_dataset = mnist_test
def train_dataloader(self):
return DataLoader(self.train_dataset, batch_size=self.batch_size)
def val_dataloader(self):
return DataLoader(self.val_dataset, batch_size=self.batch_size)
def test_dataloader(self):
return DataLoader(self.test_dataset, batch_size=self.batch_size)
使用上面的DataModule可以更加方便的分项数据定义
# use an MNIST dataset
mnist_dm = MNISTDatamodule()
model = LitModel(num_classes=mnist_dm.num_classes)
trainer.fit(model, mnist_dm)
# or other datasets with the same model
imagenet_dm = ImagenetDatamodule()
model = LitModel(num_classes=imagenet_dm.num_classes)
trainer.fit(model, imagenet_dm)
在Pytorch中,我们通过下列方式来Optimizer代码:
from torch.optim import Adam
optimizer = Adam(LitMNIST().parameters(), lr=1e-3)
在Lightning中,方法类似,但是我们会将其包含在configure_optimizers()
方法中
class LitMNIST(LightningModule):
def configure_optimizers(self):
return Adam(self.parameters(), lr=1e-3)
我们将其写在training_step()`方法中
class LitMNIST(LightningModule):
def training_step(self, batch, batch_idx):
x, y = batch
logits = self(x)
loss = F.nll_loss(logits, y)
return loss
目前为止,我们已经完成了四个主要的代码部分
import torch
from torch.nn import functional as F
from torch import nn
from pytorch_lightning.core.lightning import LightningModule
class LitMNIST(LightningModule):
def __init__(self):
super().__init__()
# mnist images are (1, 28, 28) (channels, width, height)
self.layer_1 = torch.nn.Linear(28 * 28, 128)
self.layer_2 = torch.nn.Linear(128, 256)
self.layer_3 = torch.nn.Linear(256, 10)
def forward(self, x):
batch_size, channels, width, height = x.size()
# (b, 1, 28, 28) -> (b, 1*28*28)
x = x.view(batch_size, -1)
x = self.layer_1(x)
x = F.relu(x)
x = self.layer_2(x)
x = F.relu(x)
x = self.layer_3(x)
x = F.log_softmax(x, dim=1)
return x
def training_step(self, batch, batch_idx):
x, y = batch
logits = self(x)
loss = F.nll_loss(logits, y)
return loss
def configure_optimizers(self):
return torch.optim.Adam(self.parameters(), lr=1e-3)
最后执行下列代码训练我们的数据:
from pytorch_lightning import Trainer
dm = MNISTDataModule()
model = LitMNIST()
trainer = Trainer(gpus=8)
trainer.fit(model, dm)
训练时间比较长
我在博客中的每篇文章都是我一字一句敲出来的,转载的文章我也注明了出处,表示对原作者的尊重。同时也希望大家都能尊重我的付出。
最后,也希望大家关注我的个人博客HD Blog
谢谢~