代码随想录day1打卡

代码随想录day1 打卡

  • 数组
    • 数组理论基础
    • 704二分查找
    • 27移除元素

数组

数组理论基础

704二分查找

//二分查找框架
int binarySearch(int[] nums, int target) {
    int left = 0, right = ...;

    while(...) {
        int mid = left + (right - left) / 2;
        if (nums[mid] == target) {
            ...
        } else if (nums[mid] < target) {
            left = ...
        } else if (nums[mid] > target) {
            right = ...
        }
    }
    return ...;
}

分析二分查找的一个技巧是:不要出现 else,而是把所有情况用 else if 写清楚,这样可以清楚地展现所有细节。

其中 … 标记的部分,就是可能出现细节问题的地方,当你见到一个二分查找的代码时,首先注意这几个地方。后文用实例分析这些地方能有什么样的变化。

另外提前说明一下,计算 mid 时需要防止溢出,代码中 left + (right - left) / 2 就和 (left + right) / 2 的结果相同,但是有效防止了 left 和 right 太大,直接相加导致溢出的情况。

题目链接:704二分查找

var search = function(nums, target) {
    let left = 0, right = nums.length - 1;
    while(left <= right) {
        let mid = Math.floor(left + (right - left) / 2);
        if (nums[mid] === target) {
            return mid
        } else if (nums[mid] < target) {
            left = mid + 1
        } else if (nums[mid] > target) {
            right = mid - 1
        }
    }
    return -1;
};

1、为什么 while 循环的条件中是 <=,而不是 <?

答:因为初始化 right 的赋值是 nums.length - 1,即最后一个元素的索引,而不是 nums.length。

这二者可能出现在不同功能的二分查找中,区别是:前者相当于两端都闭区间 [left, right],后者相当于左闭右开区间 [left, right),因为索引大小为 nums.length 是越界的。

我们这个算法中使用的是前者 [left, right] 两端都闭的区间。这个区间其实就是每次进行搜索的区间。

什么时候应该停止搜索呢?当然,找到了目标值的时候可以终止:

if(nums[mid] == target)
	return mid; 

但如果没找到,就需要 while 循环终止,然后返回 -1。那 while 循环什么时候应该终止?搜索区间为空的时候应该终止,意味着你没得找了,就等于没找到嘛。

while(left <= right) 的终止条件是 left == right + 1,写成区间的形式就是 [right + 1, right],或者带个具体的数字进去 [3, 2],可见这时候区间为空,因为没有数字既大于等于 3 又小于等于 2 的吧。所以这时候 while 循环终止是正确的,直接返回 -1 即可。

while(left < right) 的终止条件是 left == right,写成区间的形式就是 [right, right],或者带个具体的数字进去 [2, 2],这时候区间非空,还有一个数 2,但此时 while 循环终止了。也就是说这区间 [2, 2] 被漏掉了,索引 2 没有被搜索,如果这时候直接返回 -1 就是错误的。

2、为什么 left = mid + 1,right = mid - 1?我看有的代码是 right = mid 或者 left = mid,没有这些加加减减,到底怎么回事,怎么判断?

答:这也是二分查找的一个难点,不过只要你能理解前面的内容,就能够很容易判断。

刚才明确了「搜索区间」这个概念,而且本算法的搜索区间是两端都闭的,即 [left, right]。那么当我们发现索引 mid 不是要找的 target 时,下一步应该去搜索哪里呢?

当然是去搜索区间 [left, mid-1] 或者区间 [mid+1, right] 对不对?因为 mid 已经搜索过,应该从搜索区间中去除。

3、此算法有什么缺陷?

答:至此,你应该已经掌握了该算法的所有细节,以及这样处理的原因。但是,这个算法存在局限性。

比如说给你有序数组 nums = [1,2,2,2,3],target 为 2,此算法返回的索引是 2,没错。但是如果我想得到 target 的左侧边界,即索引 1,或者我想得到 target 的右侧边界,即索引 3,这样的话此算法是无法处理的。

这样的需求很常见,你也许会说,找到一个 target,然后向左或向右线性搜索不行吗?可以,但是不好,因为这样难以保证二分查找对数级的复杂度了。

我们后续的算法就来讨论这两种二分查找的算法。

27移除元素

题目链接:27移除元素

function removeElement(nums, val) {
    //暴力解法
    for (let i = 0; i < nums.length; i++) {
        if (nums[i] === val) {
            nums.splice(i, 1);
            i--;
        }
    }
    return nums.length;
}
function removeElement(nums, val) {
    //双指针
    let i = 0;
    for (let j = 0; j < nums.length; j++) {
        if (nums[j] !== val) { //如果不等于val,就把j的值赋给i
            nums[i] = nums[j];
            i++;
        }
    }
    return i;
}

类似 26. 删除有序数组中的重复项 中的快慢指针:

如果 fast 遇到需要去除的元素,则直接跳过,否则就告诉 slow 指针,并让 slow 前进一步。

你可能感兴趣的:(代码随想录打卡,算法,leetcode,数据结构)