详解ArrayList在遍历时remove元素所发生的并发修改异常的原因及解决方法

本文将以“在遍历中删除”为着手点,在其基础上进行源码分析及相关问题解决。modCount的含义、迭代器所包含的方法、为什么会发生并发修改异常都将会在这篇文章中进行说明。

引入

这是一个并发修改异常的示例,它使用了迭代器iterator来获取元素,同时使用ArrayList自身的remove方法移除元素(使用增强for循环去遍历获取元素亦会如此,增强for循环底层用的也是迭代器,enhanced for loop is nothing but a syntactic sugar over Iterator in Java)

public static void main(String[] args) {
	//请动手实践运行一下
    List<String> list = new ArrayList<String>();
    list.add("a");
    list.add("b");
    list.add("c");
    list.add("d");
    list.add("e");
    Iterator<String> iterator = list.iterator();
    while (iterator.hasNext()) {
        String str = iterator.next();
        if (str.equals("a")) {
            list.remove(str);
        } else {
            System.out.println(str);
        }
    }
}

原因分析

ArrayList内部实现了迭代器Itr,如图所示
详解ArrayList在遍历时remove元素所发生的并发修改异常的原因及解决方法_第1张图片
通过迭代器获取元素时(iterator.next())会进行checkForComodification,源码如下

public E next() {
    checkForComodification();/***看这行***/
    int i = cursor;
    if (i >= size)
        throw new NoSuchElementException();
    Object[] elementData = ArrayList.this.elementData;
    if (i >= elementData.length)
        throw new ConcurrentModificationException();
    cursor = i + 1;//cursor向后挪一位
    return (E) elementData[lastRet = i];//lastRet为当前取出的元素所在索引,后面会用到
}
final void checkForComodification() {/***再看这里***/
    if (modCount != expectedModCount)
        throw new ConcurrentModificationException();
}

modCount即此列表已被结构修改的次数。 结构修改是改变列表大小的那些修改(如增删,注意列表大小是size而不是capacity),或以其他方式扰乱它,使得正在进行的迭代可能产生不正确的结果的那些修改。
而expectedModCount会在迭代器被创建出来时初始化为modCount,源码如下

private class Itr implements Iterator<E> {
    int cursor;       // index of next element to return
    int lastRet = -1; // index of last element returned; -1 if no such
    int expectedModCount = modCount;
    
    //instance methods...
}   

是不是发现什么端倪了呢?当调用remove时(进而调用fastRemove)即被视为结构修改,因此modCount的值是会发生变化的,这样当程序再次通过iterator.next()获取元素时,通过checkForComodification方法发现modCount变化了,而expectedModCount 依然是初始化时的值,因此抛出ConcurrentModificationException。

让我们来确认一下我们的想法,remove方法及fastRemove方法的源码如下

public boolean remove(Object o) {
    if (o == null) {
        for (int index = 0; index < size; index++)
            if (elementData[index] == null) {
                fastRemove(index);/***看这行调用了fastRemove***/
                return true;
            }
    } else {
        for (int index = 0; index < size; index++)
            if (o.equals(elementData[index])) {
                fastRemove(index);
                return true;
            }
    }
    return false;
}

private void fastRemove(int index) {
    modCount++;/***再看这行modCount变化了(自增)***/
    int numMoved = size - index - 1;
    if (numMoved > 0)
        System.arraycopy(elementData, index+1, elementData, index,
                         numMoved);
    elementData[--size] = null; // clear to let GC do its work
}

这样我们就对ArrayList在遍历时remove元素所发生的并发修改异常有了一个明确的了解。

迭代器Itr的补充说明:size是数组大小,cursor是下一元素的索引(虽然是下一元素的索引,但数组开始索引是从0开始的,所以cursor默认初始化为0)数组的最大索引一定是小于size的(size-1)索引=size还要取元素的话将会越界。

在说明“如何在不发生异常的情况下删除数据”前,先说一下根据上述示例可能会产生的其他问题(如不感兴趣也可跳过0.0)。

删除不规范时所产生的其他问题

问题1.虽然remove的不规范,但是程序依然能够运行,虽然不符合预期,但是没有发生并发修改异常
如果我们删除的不是a,而是d的话(最大为e),将会输出a b c而不会发生并发修改异常,代码如下

while (iterator.hasNext()) {
    String str = (String) iterator.next();
    if (str.equals("d")) {//将原先的a改为d
        list.remove(str);
    } else {
        System.out.println(str);
    }
}

原因分析:因为删除d时cursor由3变为4(从0起算),size由5变为4。因此hasNext返回true,并且循环结束,因此不会输出e(循环结束也意味着不会通过next进行checkForComodification,所以不会引发异常)

问题2.看似不会发生并发修改异常,可实际却发生了0.0
如果我们将要删除的元素改为e,那么当删除e时cursor由4变为5,size由5变为4,5明明大于4了应该不会有下一元素了,不会进入循环通过next取元素了,可当这么想着的时候,异常却发生了,代码如下:

while (iterator.hasNext()) {
    String str = (String) iterator.next();
    if (str.equals("e")) {
        list.remove(str);
    } else {
        System.out.println(str);
    }
}

原因分析:这是由于iterator.hasNext()的原理导致,点击hasNext()查看源码可发现,hasNext并不是由cursor < size来实现的而是通过cursor != size来实现的,这样程序将再次进入循环取元素进而发生并发修改异常

public boolean hasNext() {
    return cursor != size;
}

如何在不报错的情况下将元素删除?

1.通过iterator获取元素的同时使用iterator的remove方法移除元素,代码如下

while (iterator.hasNext()) {
    String str = (String) iterator.next();
    if (str.equals("a")) {
        iterator.remove();
    } else {
        System.out.println(str);
    }
}

通过Itr的remove源码可以发现(如下),它在每次删除的同时还会更新expectedModCount为当前自增后的modCount,使得下次通过iterator.next()取元素时经得住checkForComodification校验(试想一下如果没有checkForComodification的话,程序将继续循环下去,cursor本指向的是当前元素索引的下一位,但remove后数据将整体向前窜一位,从而导致cursor指向的索引位置对应的数据发生了偏差,上述问题2的情况时若没有进行checkForComodification则还会发生NoSuchElementException异常,详见上述next源码)。

lastRet的值为最新一次通过next获取元素时,那个元素所对应的索引,这里通过将cursor = lastRet,从而把cursor的索引向前移动了一位,继而避免了取数据时的偏差(cursor 与 lastRet的关系详见上面的next源码)

在这里lastRet 会归为-1(它所对应的元素已经被删除了),这也是为什么不能连续调用两次迭代器的remove方法的原因,若执意如此,该方法将会抛出IllegalStateException的异常

public void remove() {
    if (lastRet < 0)
        throw new IllegalStateException();
    checkForComodification();

    try {
        ArrayList.this.remove(lastRet);
        cursor = lastRet;
        lastRet = -1;
        expectedModCount = modCount;
    } catch (IndexOutOfBoundsException ex) {
        throw new ConcurrentModificationException();
    }
}

2.通过list自身的get方法获取元素的同时通过自身的remove方法移除元素,代码如下

for (int i = 0;i<list.size();i++){
    String s = list.get(i);
    if ("a".equals(s)){
        list.remove(i);//进而调用fastRemove
        i--;//相当于cursor = lastRet;将返回的下一元素的索引 = 返回的最新元素的索引(当前元素索引)
    }else {
        System.out.println(s);
    }
}

该种情况下不会将expectedModCount修正为最新的modCount,同时也不会进行checkForComodification的检查,若此时删除并不修正当前索引的话,将会造成上述的数据偏差(遍历条件中的list.size()保存为固定值或连续调用list.remove(i)次数过多还可以发生索引越界异常0.0)

注意,不能保证迭代器的快速失败行为,因为通常来说,在存在不同步的并发修改的情况下,不可能做出任何严格的保证。快速失败的迭代器会尽最大努力抛出ConcurrentModificationException。因此,编写依赖于此异常的程序的正确性是错误的:迭代器的快速失败行为应仅用于检测错误。

add请参照remove的方式去查阅ArrayList中的内部类ListItr

你可能感兴趣的:(java,arraylist,iterator)