TCP连接是什么意思?TCP/IP协议?协议分层?

计算机与网络设备要相互通信,双方就必须基于相同的方法。比如,如何探测到通信目标、由哪一边先发起通信、使用哪种语言进行通信、怎样结束通信等规则都需要事先确定。

不同的硬件、操作系统之间的通信,所有的这一切都需要一种规则。而我们就把这种规则称为协议(protocol)

协议中存在各式各样的内容。从电缆的规格到 IP 地址的选定方法、寻找异地用户的方法、双方建立通信的顺序,以及 Web 页面显示需要处理的步骤,等等。

像这样把与互联网相关联的协议集合起来总称为 TCP/IP

也有说法认为,TCP/IP 是指 TCP 和 IP 这两种协议。还有一种说法认为,TCP/IP 是在 IP 协议的通信过程中,使用到的协议族的统称



目录:

o  协议分层

o  数据的封装与分用

o  端口号和DNS

o  TCP/IP 通信传输流

o  TCP协议

o  SYN 攻击

o  TCP和UDP比较

o  IP协议

o  ARP协议



协议分层

ISO/OSI模型,即开放式通信系统互联参考模型(Open System Interconnection Reference Model),是国际标准化组织(ISO)提出的一个试图使各种计算机在世界范围内互连为网络的标准框架,简称OSI。

TCP/IP协议模型(Transmission Control Protocol/Internet Protocol),包含了一系列构成互联网基础的网络协议,是Internet的核心协议,通过20多年的发展已日渐成熟,并被广泛应用于局域网和广域网中,目前已成为事实上的国际标准。TCP/IP协议簇是一组不同层次上的多个协议的组合,通常被认为是一个四层协议系统,与OSI的七层模型相对应。

TCP/IP 和 ISO/OSI


TCP/IP协议族按照层次由上到下。最上面的是应用层,第二层则是传输层, 第三层是网络层,IP协议就在这里,它负责对数据加上IP地址和其他的数据以确定传输的目标。第四层是数据链路层,这个层次为待传送的数据加入一个以太网协议头,并进行CRC编码,为最后的数据传输做准备。再下一层则是硬件层次了,负责网络的传输,这个层次的定义包括网线的制式(有些并不将其放在tcp/ip协议族中)。发送协议的主机从上自下将数据按照协议封装,而接收数据的主机则按照协议从得到的数据包解开,最后拿到需要的数据。

应用层

应用层决定了向用户提供应用服务时通信的活动。应用层负责处理特定的应用程序细节。 

TCP/IP 协议族内预存了各类通用的应用服务。比如,FTP(File Transfer Protocol,文件传输协议)和 DNS(Domain Name System,域 名系统)服务就是其中两类。 HTTP 协议也处于该层。

传输层

传输层对上层应用层,提供处于网络连接中的两台计算机之间的数据传输。

在传输层有两个性质不同的协议:TCP协议和UDP协议。主要为两台主机上的应用程序提供端到端的通信。

TCP(Transmission Control Protocol,传输控制协议)为两台主机提供高可靠性的数据通信。它所做的工作包括把应用程序交给它的数据分成合适的小块交给下面的网络层,确认接收到的分组,设置发送最后确认分组的超时时钟等。由于运输层提供了高可靠性的端到端的通信,因此应用层可以忽略所有这些细节。为了提供可靠的服务,TCP采用了超时重传、发送和接收端到端的确认分组等机制。

UDP(User Data Protocol,用户数据报协议)则为应用层提供一种非常简单的服务。它只是把称作数据报的分组从一台主机发送到另一台主机,但并不保证该数据报能到达另一端。一个数据报是指从发送方传输到接收方的一个信息单元(例如,发送方指定的一定字节数的信息)。UDP协议任何必需的可靠性必须由应用层来提供。

网络层 / 互联网层 / 网际层(在图中为网际层)

网络层用来处理在网络上流动的数据包。数据包是网络传输的最小数据单位。该层规定了通过怎样的路径(所谓的传输路线)到达对方计算机,并把数据包传送给对方。

与对方计算机之间通过多台计算机或网络设备进行传输时,网络层所起的作用就是在众多的选项内选择一条传输路线。

也称作互联网层,处理分组在网络中的活动,例如分组的选路。在TCP/IP协议族中,网络层协议包括IP协议,ICMP协议,以及IGMP协议。

IP(Internet Protocol,网际协议)是一种网络层协议,提供的是一种不可靠的服务,它只是尽可能快地把分组从源结点送到目的结点,但是并不提供任何可靠性保证。同时被TCP和UDP使用。TCP和UDP的每组数据都通过端系统和每个中间路由器中的IP层在互联网中进行传输。

ICMP(Internet Control Message Protocol,Internet互联网控制报文协议)是IP协议的附属协议。IP层用它来与其他主机或路由器交换错误报文和其他重要信息。

IGMP(Internet Group Management Protocol,Internet组管理协议)是Internet组管理协议。它用来把一个UDP数据报多播到多个主机。

链路层 / 数据链路层 / 网络接口层(在图中为网络接口层和硬件层)

用来处理连接网络的硬件部分。包括控制操作系统、硬件的设备驱 动、NIC(Network Interface Card,网络适配器,即网卡),及光纤等 物理可见部分(还包括连接器等一切传输媒介)。硬件上的范畴均在链路层的作用范围之内。

也称作数据链路层或网络接口层,通常包括操作系统中的设备驱动程序和计算机中对应的网络接口卡。它们一起处理与电缆(或其他任何传输媒介)的物理接口细节。ARP(Address Resolution Protocol,地址解析协议)和RARP(Reverse Address Resolution Protocol,逆地址解析协议)是某些网络接口(如以太网和令牌环网)使用的特殊协议,用来转换IP层和网络接口层使用的地址。

TCP/IP分层模型



数据的封装与分用

当应用程序用TCP传送数据时,数据被送入协议栈中,然后逐个通过每一层直到被当作一串比特流送入网络。其中每一层对收到的数据都要增加一些首部信息(有时还要增加尾部信息),该过程如下图所示。

TCP传给IP的数据单元称作TCP报文段或简称为TCP段(TCP segment);UDP数据与TCP数据基本一致。唯一的不同是UDP传给IP的信息单元称作U D P数据报(UDP datagram),而且UDP的首部长为8字节。IP传给网络接口层的数据单元称作IP数据报(IP datagram)。通过以太网传输的比特流称作帧(Frame )。 


当目的主机收到一个以太网数据帧时,数据就开始从协议栈中由底向上升,同时去掉各层协议加上的报文首部。每层协议盒都要去检查报文首部中的协议标识,以确定接收数据的上层协议。这个过程称作分用(Demultiplexing)。协议是通过目的端口号、源I P地址和源端口号进行解包的。



端口号和DNS

端口号

服务器一般都是通过知名端口号来识别的。例如,对于每个TCP/IP实现来说,FTP服务器的TCP端口号都是21,每个Telnet服务器的TCP端口号都是23,每个TFTP (简单文件传送协议)服务器的UDP端口号都是69。任何TCP/IP实现所提供的服务都用知名的1~1023之间的端口号。这些知名端口号由Internet号分配机构(Internet Assigned Numbers Authority, IANA)来管理。知名端口号介于1~255之间;256~1023之间的端口号通常都是由Unix系统占用,以提供一些特定的Unix服务;1024~5000端口号用于客户端分配临时端口号;大于5000的端口号是为其他服务器预留的。

DNS

DNS 是计算机域名系统 (Domain Name System 或Domain Name Service) 的缩写,它是由解析器以及域名服务器组成的。域名服务器是指保存有该网络中所有主机的域名和对应IP地址,并具有将域名转换为IP地址功能的服务器。



TCP/IP 通信传输流

利用 TCP/IP 协议族进行网络通信时,会通过分层顺序与对方进行通信。发送端从应用层往下走,接收端则往应用层往上走。

我们用 HTTP 举例来说明,首先作为发送端的客户端在应用层 (HTTP 协议)发出一个想看某个Web页面的 HTTP请求。

接着,为了传输方便,在传输层(TCP 协议)把从应用层处收到的数据(HTTP 请求报文)进行分割,并在各个报文上打上标记序号及端口号后转发给网络层。

在网络层(IP 协议),增加作为通信目的地的 MAC 地址后转发给链路层。这样一来,发往网络的通信请求就准备齐全了。

接收端的服务器在链路层接收到数据,按序往上层发送,一直到应用层。当传输到应用层,才能算真正接收到由客户端发送过来的 HTTP请求。

发送端在层与层之间传输数据时,每经过一层时必定会被打上一个该层所属的首部信息。反之,接收端在层与层传输数据时,每经过一层时会把对应的首部消去。

这种把数据信息包装起来的做法称为封装(encapsulate)。



TCP协议

TCP 提供一种面向连接的、可靠的字节流服务

在一个 TCP 连接中,仅有两方进行彼此通信。广播和多播不能用于 TCP

TCP 使用校验,确认和重传机制来保证可靠传输

TCP 给数据分节进行排序,并使用累积确认保证数据的顺序不变和非重复

TCP 使用滑动窗口机制来实现流量控制,通过动态改变窗口的大小进行拥塞控制

注意:TCP 并不能保证数据一定会被对方接收到,因为这是不可能的。TCP 能够做到的是,如果有可能,就把数据递送到接收方,否则就(通过放弃重传并且中断连接这一手段)通知用户。因此准确说 TCP 也不是 100% 可靠的协议,它所能提供的是数据的可靠递送或故障的可靠通知。


【TCP KeepAlive】

TCP 的连接,实际上是一种纯软件层面的概念,在物理层面并没有“连接”这种概念。TCP 通信双方建立交互的连接,但是并不是一直存在数据交互,有些连接会在数据交互完毕后,主动释放连接,而有些不会。在长时间无数据交互的时间段内,交互双方都有可能出现掉电、死机、异常重启等各种意外,当这些意外发生之后,这些 TCP 连接并未来得及正常释放,在软件层面上,连接的另一方并不知道对端的情况,它会一直维护这个连接,长时间的积累会导致非常多的半打开连接,造成端系统资源的消耗和浪费,为了解决这个问题,在传输层可以利用 TCP 的 KeepAlive 机制实现来实现。主流的操作系统基本都在内核里支持了这个特性。

TCP KeepAlive 的基本原理是,隔一段时间给连接对端发送一个探测包,如果收到对方回应的 ACK,则认为连接还是存活的,在超过一定重试次数之后还是没有收到对方的回应,则丢弃该 TCP 连接。

TCP-Keepalive-HOWTO 有对 TCP KeepAlive 特性的详细介绍,有兴趣的同学可以参考。这里主要说一下,TCP KeepAlive 的局限。首先 TCP KeepAlive 监测的方式是发送一个 probe 包,会给网络带来额外的流量,另外 TCP KeepAlive 只能在内核层级监测连接的存活与否,而连接的存活不一定代表服务的可用。例如当一个服务器 CPU 进程服务器占用达到 100%,已经卡死不能响应请求了,此时 TCP KeepAlive 依然会认为连接是存活的。因此 TCP KeepAlive 对于应用层程序的价值是相对较小的。需要做连接保活的应用层程序,例如 QQ,往往会在应用层实现自己的心跳功能。


【TCP三次握手】(Three-way Handshake)

所谓三次握手,是指建立一个 TCP 连接时,需要客户端和服务器总共发送3个包。

三次握手的目的是连接服务器指定端口,建立 TCP 连接,并同步连接双方的序列号和确认号,交换 TCP 窗口大小信息。在 socket 编程中,客户端执行 connect() 时。将触发三次握手。

第一次握手(SYN=1, seq=x):

客户端发送一个 TCP 的 SYN 标志位置1的包,指明客户端打算连接的服务器的端口,以及初始序号 X,保存在包头的序列号(Sequence Number)字段里。

发送完毕后,客户端进入 SYN_SEND 状态。

第二次握手(SYN=1, ACK=1, seq=y, ACKnum=x+1):

服务器发回确认包(ACK)应答。即 SYN 标志位和 ACK 标志位均为1。服务器端选择自己 ISN 序列号,放到 Seq 域里,同时将确认序号(Acknowledgement Number)设置为客户的 ISN 加1,即X+1。 发送完毕后,服务器端进入 SYN_RCVD 状态。

第三次握手(ACK=1,ACKnum=y+1):

客户端再次发送确认包(ACK),SYN 标志位为0,ACK 标志位为1,并且把服务器发来 ACK 的序号字段+1,放在确定字段中发送给对方,并且在数据段放写ISN的+1

发送完毕后,客户端进入 ESTABLISHED 状态,当服务器端接收到这个包时,也进入 ESTABLISHED 状态,TCP 握手结束。


【TCP四次挥手】(Four-way Handshake)

TCP 的连接的拆除需要发送四个包,因此称为四次挥,也叫做改进的三次握手。客户端或服务器均可主动发起挥手动作,在 socket 编程中,任何一方执行 close() 操作即可产生挥手操作。

第一次挥手(FIN=1,seq=x):

假设客户端想要关闭连接,客户端发送一个 FIN 标志位置为1的包,表示自己已经没有数据可以发送了,但是仍然可以接受数据。

发送完毕后,客户端进入 FIN_WAIT_1 状态。

第二次挥手(ACK=1,ACKnum=x+1):

服务器端确认客户端的 FIN 包,发送一个确认包,表明自己接受到了客户端关闭连接的请求,但还没有准备好关闭连接。

发送完毕后,服务器端进入 CLOSE_WAIT 状态,客户端接收到这个确认包之后,进入 FIN_WAIT_2 状态,等待服务器端关闭连接。

第三次挥手(FIN=1,seq=y):

服务器端准备好关闭连接时,向客户端发送结束连接请求,FIN 置为1。

发送完毕后,服务器端进入 LAST_ACK 状态,等待来自客户端的最后一个ACK。

第四次挥手(ACK=1,ACKnum=y+1):

客户端接收到来自服务器端的关闭请求,发送一个确认包,并进入 TIME_WAIT状态,等待可能出现的要求重传的 ACK 包。

服务器端接收到这个确认包之后,关闭连接,进入 CLOSED 状态。

客户端等待了某个固定时间(两个最大段生命周期,2MSL,2 Maximum Segment Lifetime)之后,没有收到服务器端的 ACK ,认为服务器端已经正常关闭连接,于是自己也关闭连接,进入 CLOSED 状态。



SYN 攻击(SYN Flood)

1. 什么是 SYN 攻击?

SYN 攻击是一种典型的 DoS/DDoS 攻击。(SYN = Synchronize Sequence Numbers,同步序列编号)

在三次握手过程中,服务器发送 SYN-ACK 之后,收到客户端的 ACK 之前的 TCP 连接称为半连接(half-open connect)。此时服务器处于 SYN_RCVD 状态。当收到 ACK 后,服务器才能转入 ESTABLISHED 状态。

SYN 攻击指的是,攻击客户端在短时间内伪造大量不存在的IP地址,向服务器不断地发送SYN包,服务器回复确认包,并等待客户的确认。由于源地址是不存在的,服务器需要不断的重发直至超时,这些伪造的SYN包将长时间占用未连接队列,正常的SYN请求被丢弃,导致目标系统运行缓慢,严重者会引起网络堵塞甚至系统瘫痪。

2. 如何检测 SYN 攻击?

检测 SYN 攻击非常的方便,当你在服务器上看到大量的半连接状态时,特别是源IP地址是随机的,基本上可以断定这是一次SYN攻击。在 Linux/Unix 上可以使用系统自带的 netstats 命令来检测 SYN 攻击。

3. 如何防御 SYN 攻击?

SYN攻击不能完全被阻止,除非将TCP协议重新设计。我们所做的是尽可能的减轻SYN攻击的危害,常见的防御 SYN 攻击的方法有如下几种:

-  缩短超时(SYN Timeout)时间

-  增加最大半连接数

-  过滤网关防护

-  SYN cookies技术



TCP和UDP比较

UDP 缺乏可靠性。UDP 本身不提供确认,序列号,超时重传等机制。UDP 数据报可能在网络中被复制,被重新排序。即 UDP 不保证数据报会到达其最终目的地,也不保证各个数据报的先后顺序,也不保证每个数据报只到达一次

UDP 数据报是有长度的。每个 UDP 数据报都有长度,如果一个数据报正确地到达目的地,那么该数据报的长度将随数据一起传递给接收方。而 TCP 是一个字节流协议,没有任何(协议上的)记录边界。

UDP 是无连接的。UDP 客户和服务器之前不必存在长期的关系。UDP 发送数据报之前也不需要经过握手创建连接的过程。

UDP 支持多播和广播。

UDP信息包的标题很短,只有8个字节,相对于TCP的20个字节信息包的额外开销很小。

小结TCP与UDP的区别:

1. 基于连接与无连接;

2. 对系统资源的要求(TCP较多,UDP少);

3. UDP程序结构较简单;

4. 流模式与数据报模式 ;

5. TCP保证数据正确性,UDP可能丢包,TCP保证数据顺序,UDP不保证。



IP协议

按层次分,IP(Internet Protocol)网际协议位于网络层。Internet Protocol 这个名称可能听起来有点夸张,但事实正是如此,因为几乎所有使用网络的系统都会用到 IP 协议。TCP/IP 协议族中的 IP 指的就是网际协议,协议名称中占据了一半位置,其重要性可见一斑。

可能有人会把“IP”和“IP 地址”搞混,“IP”其实是一种协议的名称。

IP 协议的作用是把各种数据包传送给对方。而要保证确实传送到对方那里,则需要满足各类条件。其中两个重要的条件是 IP 地址和 MAC 地址(Media Access Control Address)。

IP 地址指明了节点被分配到的地址,MAC 地址是指网卡所属的固定地址。IP 地址可以和 MAC 地址进行配对。IP 地址可变换,但 MAC 地址基本上不会更改。

使用 ARP 协议凭借 MAC 地址进行通信

IP 间的通信依赖 MAC 地址。在网络上,通信的双方在同一局域网 (LAN)内的情况是很少的,通常是经过多台计算机和网络设备中转 才能连接到对方。而在进行中转时,会利用下一站中转设备的 MAC 地址来搜索下一个中转目标。这时,会采用 ARP 协议(Address Resolution Protocol)。ARP 是一种用以解析地址的协议,根据通信方的 IP 地址就可以反查出对应的 MAC 地址。

IP 网际协议IP是TCP/IP的心脏,也是网络层中最重要的协议。

各种物理网络在链路层(二层)所传输的基本单元为帧(MAC帧),其帧格式随物理网络而异,各物理网络的物理地址(MAC地址)也随物理网络而异。IP协议的作用就是向传输层(TCP层)提供统一的IP包,即将各种不同类型的MAC帧转换为统一的IP包,并将MAC帧的物理地址变换为全网统一的逻辑地址(IP地址)。这样,这些不同物理网络MAC帧的差异对上层而言就不复存在了。正因为这一转换,才实现了不同类型物理网络的互联。

IP协议面向无连接,IP网中的节点路由器根据每个IP包的包头IP地址进行寻址,这样同一个主机发出的属于同一报文的IP包可能会经过不同的路径到达目的主机.

IP层接收由更低层(网络接口层例如以太网设备驱动程序)发来的数据包,并把该数据包发送到更高层---TCP或UDP层;相反,IP层也把从TCP或UDP层接收来的数据包传送到更低层。IP数据包是不可靠的,因为IP并没有做任何事情来确认数据包是按顺序发送的或者没有被破坏。IP数据包中含有发送它的主机的地址(源地址)和接收它的主机的地址(目的地址)。

高层的TCP和UDP服务在接收数据包时,通常假设包中的源地址是有效的。也可以这样说,IP地址形成了许多服务的认证基础,这些服务相信数据包是从一个有效的主机发送来的。IP确认包含一个选项,叫作IP source routing,可以用来指定一条源地址和目的地址之间的直接路径。对于一些TCP和UDP的服务来说,使用了该选项的IP包好像是从路径上的最后一个系统传递过来的,而不是来自于它的真实地点。这个选项是为了测试而存在的,说明了它可以被用来欺骗系统来进行平常是被禁止的连接。那么,许多依靠IP源地址做确认的服务将产生问题并且会被非法入侵。



ARP协议

IP 间的通信依赖 MAC 地址。在网络上,通信的双方在同一局域网(LAN)内的情况是很少的,通常是经过多台计算机和网络设中转才能连接到对方。而在进行中转时,会利用下一站中转设备的 MAC地址来搜索下一个中转目标。这时,会采用 ARP 协议(Address Resolution Protocol)。ARP 是一种用以解析地址的协议,根据通信方的 IP 地址就可以反查出对应的 MAC 地址。

你可能感兴趣的:(TCP连接是什么意思?TCP/IP协议?协议分层?)