- 【学习思维模型】
宇希啊
思维模型学习
学习思维模型一、理解类模型二、记忆类模型三、解决问题类模型四、结构化学习模型五、效率与习惯类模型六、高阶思维模型七、实践建议八、新增学习思维模型**1.波利亚问题解决四步法****2.主动回忆(ActiveRecall)****3.鱼骨图(因果图/IshikawaDiagram)****4.MECE原则(MutuallyExclusive,CollectivelyExhaustive)****5.
- 深度学习训练中GPU内存管理
@Mr_LiuYang
遇到过的问题内存管理内存溢出outofmemoryGPU内存
文章目录概述常见问题1、设备选择和数据迁移2、显存监控函数3、显存释放函数4、自适应batchsize调节5、梯度累积概述在深度学习模型训练中,主流GPU显存通常为8GB~80GB,内存不足会导致训练中断或BatchSize受限,GPU内存管理是优化性能和避免OutOfMemoryError的关键挑战。本博客简介PyTorch中GPU内存管理的核心函数、用法和实战技巧,帮助开发者高效利用显存资源。
- 深度学习pytorch之简单方法自定义9类卷积即插即用
@Mr_LiuYang
计算机视觉基础卷积类型非对称卷积深度卷积空洞卷积组卷积深度可分离卷积动态卷积
本文详细解析了PyTorch中torch.nn.Conv2d的核心参数,通过代码示例演示了如何利用这一基础函数实现多种卷积操作。涵盖的卷积类型包括:标准卷积、逐点卷积(1x1卷积)、非对称卷积(长宽不等的卷积核)、空洞卷积(扩大感受野)、深度卷积(逐通道滤波)、组卷积(分组独立处理)、深度可分离卷积(深度+逐点组合)、转置卷积(上采样)和动态卷积(动态生成卷积核),帮助读者理解如何通过调整参数灵活
- 一学就会的深度学习基础指令及操作步骤(5)使用预训练模型
小圆圆666
深度学习人工智能python卷积神经网络
文章目录使用预训练模型加载预训练模型图像加载与预处理预测使用预训练模型查看模型库和常用模型加载预训练模型fromtorchvision.modelsimportvgg16#VGG16模型架构的定义fromtorchvision.modelsimportVGG16_Weights#VGG16的预训练权重配置#loadtheVGG16network*pre-trained*ontheImageNetd
- Flink-DataStreamAPI-生成水印
隔着天花板看星星
flink大数据分布式
下面我们将学习Flink提供的用于处理事件时间戳和水印的API,也会介绍有关事件时间、流转时长和摄取时间,下面就让我们跟着官网来学习吧一、水印策略介绍为了处理事件时间,Flink需要知道事件时间戳,这意味着流中的每个元素都需要分配其事件时间戳。这通常是通过使用TimestampAssigner从元素中的某个字段访问/提取时间戳来完成的。时间戳分配与生成水印密切相关,水印告诉系统事件时间的进度。我们
- MySQL保姆级教程(SQL语法基础篇)从小白到高手的进阶指南,收藏这一篇就够了
网安导师小李
网络安全编程程序员mysqlsqladb安全web安全网络自动化
本章节精心构构造SQL语法学习之旅的基石,旨在从基础出发,逐步深入,全面解析SQL语法规则并辅以丰富实例。通过这一篇章,您将循序渐进地掌握MySQL的核心语法,开启数据库操作的新境界。1:SQL语言概述SQL(StructuredQueryLanguage),简称SQL。结构化查询语言包含6个部分:类型释义范例数据查询语言DQL:DataQueryLanguage如SELECT数据操作语言DML:
- Golang后端学习笔记 — 6. Golang操作数据库事务的方法
宝码
Golang后端学习笔记golang数据库事务postgresql
之前,学习了对数据库的每个表执行CRUD操作。真实的场景中,我们经常需要执行一个事务,它组合了多个表的相关操作。本节学习如何在Golang中实现它。在开始之前,先聊一下事务。什么是数据库事务?它是一个单一的工作单元,通常由多个表操作组成。比如:在我们的小银行项目中,我们要从张三的账户中向李四的账户中转账10元。该交易就包括5个操作,涉及到accounts表、entries表和transfers表:
- 深度学习PyTorch之数据加载DataLoader
@Mr_LiuYang
计算机视觉基础深度学习pytorch人工智能
深度学习pytorch之简单方法自定义9类卷积即插即用文章目录数据加载基础架构1、Dataset类详解2、DataLoader核心参数解析3、数据增强数据加载基础架构核心类关系图torch.utils.data├──Dataset(抽象基类)├──DataLoader(数据加载器)├──Sampler(采样策略)├──BatchSampler(批量采样)└──IterableDataset(流式数
- 黑马程序员-接口测试-四天学习接口测试-第二天-接口用例设计,测试点,功能测试,安全测试,性能测试,单接口测试,业务场景测试用例,postman简介,安装
学习记录wanxiaowan
postman学习功能测试
今日学习目标分析接口文档,设计编写接口测试用例使用Postman设置请求方法、URL、请求头、请求体,向接口发送http请求,并查看响应数据分析接口文档,设计接口测试用例使用postman设置请求方法,url请求头,请求体,查看响应数据3接口用例设计为什么写防止测试点漏测。条理清晰方便分配工作,评估工作量和时间面试时使用!接口测试的测试点测试点称之为测试维度。5功能测试单接口功能:手工测试中的单个
- 第十章:C++ 标准
weisonx
C++全栈知识体系c++
第十章:C++标准C++语言不断演进,每个新版本都引入了新的特性和改进。本章将详细介绍C++11、C++14、C++17、C++20和C++23的重要特性及其对C++开发的影响。通过对这些标准的学习,读者可以掌握现代C++编程的最新趋势,提高代码的可维护性、性能和可扩展性。10.1C++11:现代C++的开端C++11标准是C++语言历史上的一次重大更新,它引入了大量的新特性,使得C++语言更加现
- XGBoost常见面试题(五)——模型对比
月亮月亮要去太阳
机器学习经验分享
XGBoost与GBDT的区别机器学习算法中GBDT和XGBOOST的区别有哪些?-知乎基分类器:传统GBDT以CART树作为基分类器,xgboost还支持线性分类器,这个时候xgboost相当于带L1和L2正则化项的逻辑斯蒂回归(分类问题)或者线性回归(回归问题)。导数:传统GBDT在优化时只用到一阶导数信息,xgboost则对代价函数进行了二阶泰勒展开,同时用到了一阶和二阶导数。同时xgboo
- 卷积神经网络(笔记01)
天行者@
cnn人工智能深度学习
视觉处理三大任务:分类、目标检测、图像分割CNN网络主要有三部分构成:卷积层(ConvolutionalLayer)、池化层(PoolingLayer)和激活函数一、解释卷积层中的偏置项是什么,并讨论在神经网络中引入偏置项的好处。在卷积神经网络(CNN)的卷积层里,卷积操作本质上是输入数据与卷积核(滤波器)进行逐元素相乘再求和的过程。偏置项(Bias)是一个额外的可学习参数,对于每个卷积核而言,都
- 【新手向】从零开始学习Java(Day29)Java 网络编程
星河天欲瞩
从零开始学习Java学习java开发语言jvm网络后端
每天二十分钟,成就Java大神,点点关注不迷路!今天是第二十九天,给坚持到这里的小伙伴点个赞!对抗混乱即修行,共勉!目录网络编程基础概念Socket(套接字)ServerSocket类(服务器端)构造方法常用方法Socket类构造方法常用方法InetAddress类本地实例服务端客户端运行步骤下节预告网络编程基础概念网络编程是指编写运行在多个设备(计算机)的程序,这些设备都通过网络连接起来。网络模
- WordPress建站给外贸人带来的负担
小机出海
建站常谈服务器sslhttps
WordPress是全球最大的开源建站平台,有着丰富的主题与插件,尽管功能非常强大,但也给想要建站的外贸人带来了一些负担。一、技术门槛与学习成本1、由于WordPress发展了几十年,里面的功能应有尽有,但往往这些复杂的功能导致建站新手对它的学习成本变得很高,需要理解各个模块与功能点,增加了上手的复杂度。2、WordPress的建站服务商他不会告诉你,你可能需要知道一些代码知识(HTML、CSS、
- 【二分算法】-- 三种二分模板总结
雨雨雨雨点子
算法算法java开发语言leetcode
文章目录1.特点2.学习中的侧重点2.1算法原理2.2模板2.2.1朴素二分模板(easy-->有局限)2.2.2查找左边界的二分模板2.2.3查找右边界的二分模板1.特点二分算法是最恶心,细节最多,最容易写出死循环的算法====但是,一旦掌握了之后,二分算法就是最简单的算法。其实并不是一定要二分,三分,四分也都可以,但是根据概率学中的求期望数学中可知,二分是效率最高的。如果是三分的话,我们就像是
- 深入学习Nginx:从入门到实践
小码快撩
nginx学习运维
引言Nginx,全名“EngineX”,是一款高性能的HTTP和反向代理服务器,由俄罗斯程序员IgorSysoev开发。以其轻量级、高并发处理能力和稳定性而闻名于世,广泛应用于负载均衡、动静内容分离、API网关、缓存服务以及静态文件服务等多个场景。本文旨在为读者提供一份详尽的Nginx技术学习指南,助您快速掌握并应用这一强大工具。。一、事件驱动模型在Nginx中,事件驱动模型是其高效处理并发连接的
- 【30天玩转python】项目实战:从零开始开发一个Python项目
爱技术的小伙子
30天玩转pythonlinux运维服务器
项目实战:从零开始开发一个Python项目在学习Python的过程中,开发一个完整的项目是非常重要的实战练习。它不仅能够帮助你巩固所学的知识,还能提高实际编程能力。本文将带领你从零开始开发一个Python项目,介绍从项目规划、环境搭建、代码实现到项目发布的完整过程。我们将以一个简单的“任务管理系统”为例,逐步讲解如何构建、测试和优化这个项目。1.项目规划1.1项目简介我们将开发一个基于命令行的任务
- flink+kafka实现流数据处理学习
上海研博数据
java
在应用系统的建设过程中,通常都会遇到需要实时处理数据的场景,处理实时数据的框架有很多,本文将以一个示例来介绍flink+kafka在流数据处理中的应用。1、概念介绍flink:是一个分布式、高可用、高可靠的大数据处理引擎,提供了一种高效、可靠、可扩展的方式来处理和分析实时数据。kafka:是用于构建实时数据管道和流应用程序并具有横向扩展,容错,wickedfast(变态快)等优点的一种消息中间件。
- Python从0到100(七十六):计算机视觉-直方图和自适应直方图均衡化
是Dream呀
python计算机视觉开发语言
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- Elasticsearch 入门教学:从零开始掌握分布式搜索引擎
格子先生Lab
搜索引擎elasticsearch分布式
引言Elasticsearch是一个开源的分布式搜索引擎,基于ApacheLucene构建,能够实现近乎实时的数据搜索和分析。它广泛应用于日志分析、全文搜索、数据可视化等场景。本文将带你从零开始学习Elasticsearch,掌握其基本概念、安装配置、数据操作及搜索功能。1.Elasticsearch简介1.1什么是Elasticsearch?Elasticsearch是一个分布式的RESTful
- 【LLM】预训练的具体流程
FOUR_A
LLMpython人工智能深度学习大模型
分词器训练预训练模型:就像你已经学会了一些基础知识的“大脑”,我们可以在这个基础上继续学习新东西。比如,有些模型已经学会了英语,但中文学得不够好。中文预训练:为了让这个“大脑”更好地理解中文,我们需要用大量的中文数据继续训练它。分词器(Tokenizer):它的作用是把一句话拆分成一个个小单元(比如词语或字)。比如,“我喜欢学习”会被拆成“我/喜欢/学习”。这些拆分后的单元会被转换成数字,方便模型
- 递推和递归_一文学会递归递推
HR刀姐
递推和递归
递归算法和递推算法无论是在ACM竞赛还是项目工程上都有着极为广泛的应用,但想要完全掌握两者的思想并不容易,对于刚刚接触编程的人来说更是这样,我在初次接触递归递推时就吃了很多的苦头,除了当时对编程语言不太熟悉之外,最大的原因就是难以理解其中的思想,本文将二者结合代码分别讲解,力求以"理论+实践"的方式使读者明白两种算法。一箭双雕,一文双递。一.递归和递推的区别学习递归递推的一个容易遇到的问题就是混淆
- ZooKeeper学习总结(1)——ZooKeeper入门介绍
一杯甜酒
ZooKeeper学习总结Zookeeper
1.概述Zookeeper是Hadoop的一个子项目,它是分布式系统中的协调系统,可提供的服务主要有:配置服务、名字服务、分布式同步、组服务等。它有如下的一些特点:简单Zookeeper的核心是一个精简的文件系统,它支持一些简单的操作和一些抽象操作,例如,排序和通知。丰富Zookeeper的原语操作是很丰富的,可实现一些协调数据结构和协议。例如,分布式队列、分布式锁和一组同级别节点中的“领导者选举
- Zookeeper+kafka学习笔记
CHR_YTU
Zookeeper
Zookeeper是Apache的一个java项目,属于Hadoop系统,扮演管理员的角色。配置管理分布式系统都有好多机器,比如我在搭建hadoop的HDFS的时候,需要在一个主机器上(Master节点)配置好HDFS需要的各种配置文件,然后通过scp命令把这些配置文件拷贝到其他节点上,这样各个机器拿到的配置信息是一致的,才能成功运行起来HDFS服务。Zookeeper提供了这样的一种服务:一种集
- Zookeeper【概念(集中式到分布式、什么是分布式 、CAP定理 、什么是Zookeeper、应用场景、为什么选择Zookeeper 、基本概念) 】(一)-全面详解(学习总结---从入门到深化)
童小纯
中间件大全---全面详解zookeeper分布式
作者简介:大家好,我是小童,Java开发工程师,CSDN博客博主,Java领域新星创作者系列专栏:前端、Java、Java中间件大全、微信小程序、微信支付、若依框架、Spring全家桶如果文章知识点有错误的地方,请指正!和大家一起学习,一起进步如果感觉博主的文章还不错的话,请三连支持一下博主哦博主正在努力完成2023计划中:以梦为马,扬帆起航,2023追梦人目录Zookeeper概念_集中式到分布
- 深度学习:马氏距离
壹十壹
深度学习深度学习人工智能
马氏距离(MahalanobisDistance)是一种用于计算不同维度数据点之间距离的度量方法。它考虑了数据的协方差结构,因此在处理具有相关性的多维数据时更加有效。与欧氏距离不同,马氏距离不仅考虑了各个变量的量纲,还考虑了它们之间的相关性。公式马氏距离计算两个向量(x)和(y)之间的距离,定义为:DM(x,y)=(x−y)TS−1(x−y)\D_M(x,y)=\sqrt{(x-y)^TS^{-1
- 深度学习:CPU和GPU算力
壹十壹
深度学习深度学习gpu算力人工智能
一、算力“算力”(ComputingPower)通常是指计算机或计算系统执行计算任务的能力。它是衡量系统处理数据、运行算法以及执行计算任务效率的重要指标。根据上下文,算力可以在以下几种场景中具体化:1.单机算力CPU算力:中央处理器的计算能力,通常用核心数量(cores)、时钟频率(GHz)、以及每秒浮点运算次数(FLOPS)等指标衡量。GPU算力:图形处理单元用于并行处理的能力,尤其是在深度学习
- 深度学习:偏差和方差
壹十壹
深度学习深度学习人工智能python机器学习
偏差(Bias)偏差衡量了模型预测值的平均值与真实值之间的差距。换句话说,偏差描述了模型预测的准确度。一个高偏差的模型容易出现欠拟合,即模型无法捕捉数据中的真实关系,因为它对数据的特征做出了错误的假设。特征:高偏差的模型通常是过于简单的模型,无法对数据中的复杂关系进行准确建模。高偏差模型的训练误差和测试误差可能都较高。解决方法:增加模型复杂度:例如增加多项式的阶数、增加神经网络的层数等。使用更多的
- HarmonyNext实战案例:基于ArkTS的高性能音视频处理应用开发
harmonyos-next
HarmonyNext实战案例:基于ArkTS的高性能音视频处理应用开发引言在HarmonyNext生态系统中,ArkTS作为新一代的编程语言,为开发者提供了强大的工具来构建高性能、跨平台的应用。本文将深入探讨如何使用ArkTS12+语法开发一个高性能的音视频处理应用,涵盖从基础概念到高级技巧的全面讲解。通过本案例,您将学习到如何利用HarmonyNext的特性,结合ArkTS的强大功能,实现复杂
- Solana中的程序派生地址(PDAs):是什么,为什么,以及如何?
GTokenTool发币平台
区块链
程序派生地址(PDA)在Solana中的应用:什么、为什么和如何?在学习Solana时,你会经常听到关于程序派生地址(PDAs)的讨论。它们就像这样——强大、多功能,而且最重要的是,稍微被误解。如果你是一个开发者,试图理解它们,不用担心。我们将在本文中一起揭开PDAs的面纱。在本文中,我将从基础开始解释PDAs,假设你刚刚开始接触Solana。因此,不需要任何先前的知识——让我们开始吧。什么是PD
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh
[email protected]
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_