前面介绍了网络的基础知识,这篇主要从OKHttp
源码角度来分析Http。
OKHttp是一个优秀的网络请求框架,有以下特点:
- 支持HTTP2/SPDY
- Socket自动选择最好路线,并支持自动重连
- 拥有自动维护的Socket连接池,减少握手次数
- 拥有队列线程池,轻松写并发
- 拥有Interceptors轻松处理请求与响应(比如透明GZIP压缩)
- 实现基于Headers的缓存策略
基本使用
同步请求
同步的Get请求
OkHttpClient client = new OkHttpClient();
Request request = new Request.Builder()
.url(url)
.build();
Response response = client.newCall(request).execute();
return response.body().string();
异步请求
异步的Get请求
OkHttpClient client = new OkHttpClient();
Request request = new Request.Builder()
.url(url)
.build();
client.newCall(request).enqueue(new Callback() {
@Override
public void onFailure(Call call, IOException e) {
Log.e("DEBUG", "##### onFailure: ", e);
}
@Override
public void onResponse(Call call, Response response) throws IOException {
Log.d("DEBUG", "##### response: " + response.body().string());
}
});
源码分析
我们从OKHttp
的初始化开始分析。
OkHttpClient
新建一个OkHttpClient
对象
OkHttpClient client = new OkHttpClient();
构造函数声明:
public OkHttpClient() {
this(new Builder());
}
Builder模式构造:
public Builder() {
dispatcher = new Dispatcher();
protocols = DEFAULT_PROTOCOLS;
connectionSpecs = DEFAULT_CONNECTION_SPECS;
eventListenerFactory = EventListener.factory(EventListener.NONE);
proxySelector = ProxySelector.getDefault();
if (proxySelector == null) {
proxySelector = new NullProxySelector();
}
cookieJar = CookieJar.NO_COOKIES;
socketFactory = SocketFactory.getDefault();
hostnameVerifier = OkHostnameVerifier.INSTANCE;
certificatePinner = CertificatePinner.DEFAULT;
proxyAuthenticator = Authenticator.NONE;
authenticator = Authenticator.NONE;
connectionPool = new ConnectionPool();
dns = Dns.SYSTEM;
followSslRedirects = true;
followRedirects = true;
retryOnConnectionFailure = true;
callTimeout = 0;
connectTimeout = 10_000;
readTimeout = 10_000;
writeTimeout = 10_000;
pingInterval = 0;
}
声明了很多属性,具体含义,等后面用到在具体介绍。
请求流程
请求流程可分为同步和异步,大体的请求流程如下图所示:
同步请求流程
client.newCall(request).execute();
newCall返回的是RealCall
,上面代码实际上执行的是RealCall
的execute方法。
@Override public Response execute() throws IOException {
synchronized (this) {
if (executed) throw new IllegalStateException("Already Executed");
executed = true;
}
transmitter.timeoutEnter();
transmitter.callStart();
try {
client.dispatcher().executed(this);
return getResponseWithInterceptorChain();
} finally {
client.dispatcher().finished(this);
}
}
-
executed
判断Call对象是否已经执行,每个Call对象只能执行一次 -
client.dispatcher()
返回Dispatcher对象,任务核心调度类,是OKHttp中最重要类之一, executed方法把该线程添加到同步线程队列
synchronized void executed(RealCall call) {
runningSyncCalls.add(call);
}
-
getResponseWithInterceptorChain()
获取HTTP请求结果,并会进行一系列拦截操作 -
client.dispatcher().finished(this)
执行完毕操作
void finished(RealCall call) {
finished(runningSyncCalls, call);
}
执行完毕后,会把线程从同步线程队列中移除:
private void finished(Deque calls, T call) {
Runnable idleCallback;
synchronized (this) {
if (!calls.remove(call)) throw new AssertionError("Call wasn't in-flight!");
idleCallback = this.idleCallback;
}
//异步方法中调用
boolean isRunning = promoteAndExecute();
if (!isRunning && idleCallback != null) {
idleCallback.run();
}
}
异步请求流程
RealCall
的enqueue方法:
@Override public void enqueue(Callback responseCallback) {
synchronized (this) {
if (executed) throw new IllegalStateException("Already Executed");
executed = true;
}
transmitter.callStart();
client.dispatcher().enqueue(new AsyncCall(responseCallback));
}
-
executed
含义和同步请求一样,表示请求只能执行一次 -
client.dispatcher().enqueue(new AsyncCall(responseCallback));
,会生成一个AsyncCall
对象,并把它加入到readyAsyncCalls
线程队列中,等待执行
AsyncCall
是RealCall
的内部类,并且是NamedRunnable
线程类,具体执行方法:
@Override protected void execute() {
boolean signalledCallback = false;
transmitter.timeoutEnter();
try {
Response response = getResponseWithInterceptorChain();
signalledCallback = true;
responseCallback.onResponse(RealCall.this, response);
} catch (IOException e) {
if (signalledCallback) {
// Do not signal the callback twice!
Platform.get().log(INFO, "Callback failure for " + toLoggableString(), e);
} else {
responseCallback.onFailure(RealCall.this, e);
}
} finally {
client.dispatcher().finished(this);
}
}
-
getResponseWithInterceptorChain()
获取HTTP请求结果,并会进行一系列拦截操作 -
client.dispatcher().finished(this);
这个方法很重要,和同步方法中调用类似,但是异步的流程则完全不同
finish方法:
void finished(AsyncCall call) {
call.callsPerHost().decrementAndGet();
finished(runningAsyncCalls, call);
}
private void finished(Deque calls, T call) {
Runnable idleCallback;
synchronized (this) {
if (!calls.remove(call)) throw new AssertionError("Call wasn't in-flight!");
idleCallback = this.idleCallback;
}
//异步方法中调用
boolean isRunning = promoteAndExecute();
if (!isRunning && idleCallback != null) {
idleCallback.run();
}
}
异步流程中,promoteAndExecute
方法:
private boolean promoteAndExecute() {
assert (!Thread.holdsLock(this));
List executableCalls = new ArrayList<>();
boolean isRunning;
synchronized (this) {
for (Iterator i = readyAsyncCalls.iterator(); i.hasNext(); ) {
AsyncCall asyncCall = i.next();
if (runningAsyncCalls.size() >= maxRequests) break; // Max capacity.
if (asyncCall.callsPerHost().get() >= maxRequestsPerHost) continue; // Host max capacity.
i.remove();
asyncCall.callsPerHost().incrementAndGet();
executableCalls.add(asyncCall);
runningAsyncCalls.add(asyncCall);
}
isRunning = runningCallsCount() > 0;
}
for (int i = 0, size = executableCalls.size(); i < size; i++) {
AsyncCall asyncCall = executableCalls.get(i);
asyncCall.executeOn(executorService());
}
return isRunning;
}
会遍历异步等待线程队列,并对正在执行的异步线程队列进行最大请求size,以及每个host最大请求size进行检查。
把异步等待线程放到正在执行线程队列中,并在等待线程队列中删除该线程,这样就把等待线程变成正在执行线程。
Dispatcher
任务调度核心类,这个类,其实在同步和异步请求流程中已经介绍过,其最重要功能是负责请求的分发。
Dispatcher在OKHttpClient的Builder中被初始化:
public Builder() {
dispatcher = new Dispatcher();
.....
}
private int maxRequests = 64;
private int maxRequestsPerHost = 5;
private @Nullable Runnable idleCallback;
/** Executes calls. Created lazily. */
private @Nullable ExecutorService executorService;
/** Ready async calls in the order they'll be run. */
private final Deque readyAsyncCalls = new ArrayDeque<>();
/** Running asynchronous calls. Includes canceled calls that haven't finished yet. */
private final Deque runningAsyncCalls = new ArrayDeque<>();
/** Running synchronous calls. Includes canceled calls that haven't finished yet. */
private final Deque runningSyncCalls = new ArrayDeque<>();
- maxRequests:最大请求并发请求数64
- maxRequestsPerHost:每个主机的最大请求数5
- executorService:线程池
- readyAsyncCalls:异步等待线程队列
- runningAsyncCalls:正在运行的异步线程队列
- runningSyncCalls:正在运行的同步线程队列
线程池executorService的声明:
public synchronized ExecutorService executorService() {
if (executorService == null) {
executorService = new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60, TimeUnit.SECONDS,
new SynchronousQueue<>(), Util.threadFactory("OkHttp Dispatcher", false));
}
return executorService;
}
- 核心线程数为0,表示线程在空闲时不会被保留,等待一段时间后停止
- 最大线程数Integer.MAX_VALUE,基本上就是可以创建线程无上限
- keepAliveTime为60s,表示如果线程空闲时,最多只能存活60s
综合上诉,在OKHttp中,设置了不设上限的线程,不保留最小线程,线程空闲时,最大存活时间为60s,保证I/O任务中高阻塞低占用的过程,不会长时间卡在阻塞上。并通过maxRequests
和maxRequestsPerHost
来控制并发最大请求数。
拦截器
在同步和异步请求中,具体的执行过程中都会调用到getResponseWithInterceptorChain
方法,该方法添加了一系列的拦截器,它在OKHttp整理流程中处于非常重要的地位,
方法实现:
Response getResponseWithInterceptorChain() throws IOException {
// Build a full stack of interceptors.
List interceptors = new ArrayList<>();
interceptors.addAll(client.interceptors());
interceptors.add(new RetryAndFollowUpInterceptor(client));
interceptors.add(new BridgeInterceptor(client.cookieJar()));
interceptors.add(new CacheInterceptor(client.internalCache()));
interceptors.add(new ConnectInterceptor(client));
if (!forWebSocket) {
interceptors.addAll(client.networkInterceptors());
}
interceptors.add(new CallServerInterceptor(forWebSocket));
Interceptor.Chain chain = new RealInterceptorChain(interceptors, transmitter, null, 0,
originalRequest, this, client.connectTimeoutMillis(),
client.readTimeoutMillis(), client.writeTimeoutMillis());
boolean calledNoMoreExchanges = false;
try {
Response response = chain.proceed(originalRequest);
if (transmitter.isCanceled()) {
closeQuietly(response);
throw new IOException("Canceled");
}
return response;
} catch (IOException e) {
calledNoMoreExchanges = true;
throw transmitter.noMoreExchanges(e);
} finally {
if (!calledNoMoreExchanges) {
transmitter.noMoreExchanges(null);
}
}
}
默认添加的拦截器:
- RetryAndFollowUpInterceptor:负责失败重试以及重定向
- BridgeInterceptor:负责把用户构造的请求转换为发送到服务器的请求、把服务器返回的响应转换为用户友好的响应
- CacheInterceptor:负责读取缓存直接返回、更新缓存
- ConnectInterceptor:负责和服务器建立连接
- CallServerInterceptor:负责向服务器发送请求数据、从服务器读取响应数据
这是典型的责任链模式,通过Interceptor
,把Request转换为Response,每个Interceptor
都有各自的责任和逻辑。
interceptors.addAll(client.interceptors());
......
if (!forWebSocket) {
interceptors.addAll(client.networkInterceptors());
}
开发者可以自己定义Interceptor
,在最开始或者发送请求前,对Request和Response进行处理。
HTTP实现
OKHttp中实现HTTP主要是在ConnectInterceptor
和CallServerInterceptor
。
ConnectInterceptor
建立服务器之间的连接,CallServerInterceptor
发送请求和读取响应。
OKHttp请求一个URL的流程:
- 根据请求的URL,createAddress方法会创建一个Address,用于连接服务器
- 检查address和routes,是否可以从ConnectionPool获取一个连接
- 如果没有获取到连接,会进行下一个路由选择(
routeSelector
),并且重新尝试从ConnectionPool获取一个连接。重试还是获取不到,就会重新创建一个连接(RealConnection
)- 获取连接后,它会与服务器建立一个直接的Socket连接、使用TLS安全通道(基于HTTP代理的HTTPS),或直接TLS连接
- 发送HTTP请求,并获取响应
ConnectInterceptor
在请求发送前的逻辑,都是ConnectInterceptor
中实现,ConnectInterceptor
的intercept,这个是3.14.2版本源码,和以前多版本稍微有些区别。
@Override public Response intercept(Chain chain) throws IOException {
RealInterceptorChain realChain = (RealInterceptorChain) chain;
Request request = realChain.request();
Transmitter transmitter = realChain.transmitter();
// We need the network to satisfy this request. Possibly for validating a conditional GET.
boolean doExtensiveHealthChecks = !request.method().equals("GET");
Exchange exchange = transmitter.newExchange(chain, doExtensiveHealthChecks);
return realChain.proceed(request, transmitter, exchange);
}
Exchange
可以传输HTTP请求和响应,并管理连接和事件。
newExchange方法调用:
/** Returns a new exchange to carry a new request and response. */
Exchange newExchange(Interceptor.Chain chain, boolean doExtensiveHealthChecks) {
synchronized (connectionPool) {
if (noMoreExchanges) {
throw new IllegalStateException("released");
}
if (exchange != null) {
throw new IllegalStateException("cannot make a new request because the previous response "
+ "is still open: please call response.close()");
}
}
ExchangeCodec codec = exchangeFinder.find(client, chain, doExtensiveHealthChecks);
Exchange result = new Exchange(this, call, eventListener, exchangeFinder, codec);
......
}
}
find方法会最终执行ExchangeFinder
的findConnection
方法,在发送HTTP请求之前的逻辑,都是这个方法中实现。
/**
* Returns a connection to host a new stream. This prefers the existing connection if it exists,
* then the pool, finally building a new connection.
*/
private RealConnection findConnection(int connectTimeout, int readTimeout, int writeTimeout,
int pingIntervalMillis, boolean connectionRetryEnabled) throws IOException {
boolean foundPooledConnection = false;
RealConnection result = null;
Route selectedRoute = null;
RealConnection releasedConnection;
Socket toClose;
synchronized (connectionPool) {
if (transmitter.isCanceled()) throw new IOException("Canceled");
......
if (result == null) {
//2.根据 Address 从连接池获取连接
// Attempt to get a connection from the pool.
if (connectionPool.transmitterAcquirePooledConnection(address, transmitter, null, false)) {
foundPooledConnection = true;
result = transmitter.connection;
} else if (nextRouteToTry != null) {
selectedRoute = nextRouteToTry;
nextRouteToTry = null;
} else if (retryCurrentRoute()) {
selectedRoute = transmitter.connection.route();
}
}
}
......
// 3. 重新选择路由
// If we need a route selection, make one. This is a blocking operation.
boolean newRouteSelection = false;
if (selectedRoute == null && (routeSelection == null || !routeSelection.hasNext())) {
newRouteSelection = true;
routeSelection = routeSelector.next();
}
List routes = null;
synchronized (connectionPool) {
if (transmitter.isCanceled()) throw new IOException("Canceled");
if (newRouteSelection) {
// Now that we have a set of IP addresses, make another attempt at getting a connection from
// the pool. This could match due to connection coalescing.
routes = routeSelection.getAll();
if (connectionPool.transmitterAcquirePooledConnection(
address, transmitter, routes, false)) {
foundPooledConnection = true;
result = transmitter.connection;
}
}
if (!foundPooledConnection) {
if (selectedRoute == null) {
selectedRoute = routeSelection.next();
}
// 3. 重新选择路由,创建新的 `RealConnection`
// Create a connection and assign it to this allocation immediately. This makes it possible
// for an asynchronous cancel() to interrupt the handshake we're about to do.
result = new RealConnection(connectionPool, selectedRoute);
connectingConnection = result;
}
}
......
// 4. 进行 Socket 连接
// Do TCP + TLS handshakes. This is a blocking operation.
result.connect(connectTimeout, readTimeout, writeTimeout, pingIntervalMillis,
connectionRetryEnabled, call, eventListener);
connectionPool.routeDatabase.connected(result.route());
Socket socket = null;
synchronized (connectionPool) {
connectingConnection = null;
// Last attempt at connection coalescing, which only occurs if we attempted multiple
// concurrent connections to the same host.
if (connectionPool.transmitterAcquirePooledConnection(address, transmitter, routes, true)) {
// We lost the race! Close the connection we created and return the pooled connection.
result.noNewExchanges = true;
socket = result.socket();
result = transmitter.connection;
} else {
//把连接放入连接池中
connectionPool.put(result);
transmitter.acquireConnectionNoEvents(result);
}
}
......
return result;
}
HTTP 的连接主要是result.connect方法:
public void connect(int connectTimeout, int readTimeout, int writeTimeout,
int pingIntervalMillis, boolean connectionRetryEnabled, Call call,
EventListener eventListener){
if (protocol != null) throw new IllegalStateException("already connected");
......
while (true) {
try {
if (route.requiresTunnel()) {
connectTunnel(connectTimeout, readTimeout, writeTimeout, call, eventListener);
if (rawSocket == null) {
// We were unable to connect the tunnel but properly closed down our resources.
break;
}
} else {
connectSocket(connectTimeout, readTimeout, call, eventListener);
}
establishProtocol(connectionSpecSelector, pingIntervalMillis, call, eventListener);
eventListener.connectEnd(call, route.socketAddress(), route.proxy(), protocol);
break;
} catch (IOException e) {
......
}
}
......
}
在 for 循环中检查这个连接是否是隧道协议连接。
connectSocket
连接socket,establishProtocol
根据HTTP协议版本进行连接处理。
重点分析下connectSocket
方法:
private void connectSocket(int connectTimeout, int readTimeout, Call call,
EventListener eventListener) throws IOException {
......
try {
//连接 socket
Platform.get().connectSocket(rawSocket, route.socketAddress(), connectTimeout);
} catch (ConnectException e) {
ConnectException ce = new ConnectException("Failed to connect to " + route.socketAddress());
ce.initCause(e);
throw ce;
}
try {
source = Okio.buffer(Okio.source(rawSocket));
sink = Okio.buffer(Okio.sink(rawSocket));
} catch (NullPointerException npe) {
if (NPE_THROW_WITH_NULL.equals(npe.getMessage())) {
throw new IOException(npe);
}
}
}
使用 Okio,封装了Socket的读写操作, 建立连接后,就可以发送请求和获取响应。
CallServerInterceptor
CallServerInterceptor的intercept()方法里负责发送请求和获取响应。
具体操作都是通过Exchange来执行,Exchange通过各个功能模块再进行分发处理。
通过 Socket 发送 HTTP消息,会按照以下声明周期:
- writeRequestHeaders发送 request Headers
- 如果有 request body,就通过 Sink 发送request body,然后关闭 Sink
- readResponseHeaders获取 response Headers
- 通过Source读取 response body,然后关闭 Source
writeRequestHeaders
Exchange 调用writeRequestHeaders方法
public void writeRequestHeaders(Request request) throws IOException {
try {
eventListener.requestHeadersStart(call);
codec.writeRequestHeaders(request);
eventListener.requestHeadersEnd(call, request);
} catch (IOException e) {
eventListener.requestFailed(call, e);
trackFailure(e);
throw e;
}
}
实际执行的方法codec实现类Http1ExchangeCodec
(前面根据HTTP协议版本选择)的writeRequest方法
/** Returns bytes of a request header for sending on an HTTP transport. */
public void writeRequest(Headers headers, String requestLine) throws IOException {
if (state != STATE_IDLE) throw new IllegalStateException("state: " + state);
sink.writeUtf8(requestLine).writeUtf8("\r\n");
for (int i = 0, size = headers.size(); i < size; i++) {
sink.writeUtf8(headers.name(i))
.writeUtf8(": ")
.writeUtf8(headers.value(i))
.writeUtf8("\r\n");
}
sink.writeUtf8("\r\n");
state = STATE_OPEN_REQUEST_BODY;
}
readResponseHeaders
读取响应头部,Http1ExchangeCodec
的readResponseHeaders方法:
@Override public Response.Builder readResponseHeaders(boolean expectContinue) throws IOException {
if (state != STATE_OPEN_REQUEST_BODY && state != STATE_READ_RESPONSE_HEADERS) {
throw new IllegalStateException("state: " + state);
}
try {
StatusLine statusLine = StatusLine.parse(readHeaderLine());
Response.Builder responseBuilder = new Response.Builder()
.protocol(statusLine.protocol)
.code(statusLine.code)
.message(statusLine.message)
.headers(readHeaders());
if (expectContinue && statusLine.code == HTTP_CONTINUE) {
return null;
} else if (statusLine.code == HTTP_CONTINUE) {
state = STATE_READ_RESPONSE_HEADERS;
return responseBuilder;
}
state = STATE_OPEN_RESPONSE_BODY;
return responseBuilder;
} catch (EOFException e) {
// Provide more context if the server ends the stream before sending a response.
String address = "unknown";
if (realConnection != null) {
address = realConnection.route().address().url().redact();
}
throw new IOException("unexpected end of stream on "
+ address, e);
}
}
StatusLine解析HTTP版本信息,readHeaders()
读取response header 信息。
/** Reads headers or trailers. */
private Headers readHeaders() throws IOException {
Headers.Builder headers = new Headers.Builder();
// parse the result headers until the first blank line
for (String line; (line = readHeaderLine()).length() != 0; ) {
Internal.instance.addLenient(headers, line);
}
return headers.build();
}
response body
解析 response body 内容:
if (forWebSocket && code == 101) {
// Connection is upgrading, but we need to ensure interceptors see a non-null response body.
response = response.newBuilder()
.body(Util.EMPTY_RESPONSE)
.build();
} else {
response = response.newBuilder()
.body(exchange.openResponseBody(response))
.build();
}
如果不是websocket,调用Exchange的openResponseBody方法:
public ResponseBody openResponseBody(Response response) throws IOException {
try {
eventListener.responseBodyStart(call);
String contentType = response.header("Content-Type");
long contentLength = codec.reportedContentLength(response);
Source rawSource = codec.openResponseBodySource(response);
ResponseBodySource source = new ResponseBodySource(rawSource, contentLength);
return new RealResponseBody(contentType, contentLength, Okio.buffer(source));
} catch (IOException e) {
eventListener.responseFailed(call, e);
trackFailure(e);
throw e;
}
}
获取返回的 body,通过 Source 转换为需要的数据类型,ResponseBody提供的 string(),转换为 String 类型
public final String string() throws IOException {
try (BufferedSource source = source()) {
Charset charset = Util.bomAwareCharset(source, charset());
return source.readString(charset);
}
}
通过上述的分析,OKHttp是通过Okio操作Socket实现了Http协议,凭借高效的性能,Android系统从4.4版本开始,HTTP的实现已经替换为OKHttp。
参考
- OKHttp源码解析(一)--初阶
- 拆轮子系列:拆 OkHttp