Android网络编程-OKHttp源码角度分析Http

前面介绍了网络的基础知识,这篇主要从OKHttp源码角度来分析Http。
OKHttp是一个优秀的网络请求框架,有以下特点:

  • 支持HTTP2/SPDY
  • Socket自动选择最好路线,并支持自动重连
  • 拥有自动维护的Socket连接池,减少握手次数
  • 拥有队列线程池,轻松写并发
  • 拥有Interceptors轻松处理请求与响应(比如透明GZIP压缩)
  • 实现基于Headers的缓存策略

基本使用

同步请求

同步的Get请求

OkHttpClient client = new OkHttpClient();
Request request = new Request.Builder()
      .url(url)
      .build();

Response response = client.newCall(request).execute();
return response.body().string();

异步请求

异步的Get请求

OkHttpClient client = new OkHttpClient();
Request request = new Request.Builder()
      .url(url)
      .build();

client.newCall(request).enqueue(new Callback() {
            @Override
            public void onFailure(Call call, IOException e) {
                Log.e("DEBUG", "##### onFailure: ", e);

            }

            @Override
            public void onResponse(Call call, Response response) throws IOException {
                Log.d("DEBUG", "##### response: " + response.body().string());
            }
        });

源码分析

我们从OKHttp的初始化开始分析。

OkHttpClient

新建一个OkHttpClient对象

OkHttpClient client = new OkHttpClient();

构造函数声明:

public OkHttpClient() {
    this(new Builder());
}

Builder模式构造:

public Builder() {
   dispatcher = new Dispatcher();
   protocols = DEFAULT_PROTOCOLS;
   connectionSpecs = DEFAULT_CONNECTION_SPECS;
   eventListenerFactory = EventListener.factory(EventListener.NONE);
   proxySelector = ProxySelector.getDefault();
   if (proxySelector == null) {
      proxySelector = new NullProxySelector();
   }
   cookieJar = CookieJar.NO_COOKIES;
   socketFactory = SocketFactory.getDefault();
   hostnameVerifier = OkHostnameVerifier.INSTANCE;
   certificatePinner = CertificatePinner.DEFAULT;
   proxyAuthenticator = Authenticator.NONE;
   authenticator = Authenticator.NONE;
   connectionPool = new ConnectionPool();
   dns = Dns.SYSTEM;
   followSslRedirects = true;
   followRedirects = true;
   retryOnConnectionFailure = true;
   callTimeout = 0;
   connectTimeout = 10_000;
   readTimeout = 10_000;
   writeTimeout = 10_000;
   pingInterval = 0;
}

声明了很多属性,具体含义,等后面用到在具体介绍。

请求流程

请求流程可分为同步和异步,大体的请求流程如下图所示:


OKHttp流程

同步请求流程

client.newCall(request).execute();

newCall返回的是RealCall,上面代码实际上执行的是RealCall的execute方法。

@Override public Response execute() throws IOException {
  synchronized (this) {
    if (executed) throw new IllegalStateException("Already Executed");
    executed = true;
  }
  transmitter.timeoutEnter();
  transmitter.callStart();
  try {
    client.dispatcher().executed(this);
    return getResponseWithInterceptorChain();
  } finally {
    client.dispatcher().finished(this);
  }
 }
  • executed判断Call对象是否已经执行,每个Call对象只能执行一次
  • client.dispatcher()返回Dispatcher对象,任务核心调度类,是OKHttp中最重要类之一, executed方法把该线程添加到同步线程队列
synchronized void executed(RealCall call) {
  runningSyncCalls.add(call);
}
  • getResponseWithInterceptorChain()获取HTTP请求结果,并会进行一系列拦截操作
  • client.dispatcher().finished(this)执行完毕操作
void finished(RealCall call) {
   finished(runningSyncCalls, call);
 }

执行完毕后,会把线程从同步线程队列中移除:

private  void finished(Deque calls, T call) {
  Runnable idleCallback;
  synchronized (this) {
    if (!calls.remove(call)) throw new AssertionError("Call wasn't in-flight!");
    idleCallback = this.idleCallback;
  }

  //异步方法中调用
  boolean isRunning = promoteAndExecute();

  if (!isRunning && idleCallback != null) {
    idleCallback.run();
  }
}

异步请求流程

RealCall的enqueue方法:

@Override public void enqueue(Callback responseCallback) {
  synchronized (this) {
    if (executed) throw new IllegalStateException("Already Executed");
    executed = true;
  }
  transmitter.callStart();
  client.dispatcher().enqueue(new AsyncCall(responseCallback));
}
  • executed含义和同步请求一样,表示请求只能执行一次
  • client.dispatcher().enqueue(new AsyncCall(responseCallback));,会生成一个AsyncCall对象,并把它加入到readyAsyncCalls线程队列中,等待执行

AsyncCallRealCall的内部类,并且是NamedRunnable线程类,具体执行方法:

@Override protected void execute() {
  boolean signalledCallback = false;
  transmitter.timeoutEnter();
  try {
    Response response = getResponseWithInterceptorChain();
    signalledCallback = true;
    responseCallback.onResponse(RealCall.this, response);
  } catch (IOException e) {
    if (signalledCallback) {
      // Do not signal the callback twice!
      Platform.get().log(INFO, "Callback failure for " + toLoggableString(), e);
    } else {
      responseCallback.onFailure(RealCall.this, e);
    }
  } finally {
    client.dispatcher().finished(this);
  }
}
  • getResponseWithInterceptorChain()获取HTTP请求结果,并会进行一系列拦截操作
  • client.dispatcher().finished(this);这个方法很重要,和同步方法中调用类似,但是异步的流程则完全不同

finish方法:

void finished(AsyncCall call) {
  call.callsPerHost().decrementAndGet();
  finished(runningAsyncCalls, call);
}
private  void finished(Deque calls, T call) {
  Runnable idleCallback;
  synchronized (this) {
    if (!calls.remove(call)) throw new AssertionError("Call wasn't in-flight!");
    idleCallback = this.idleCallback;
  }

  //异步方法中调用
  boolean isRunning = promoteAndExecute();

  if (!isRunning && idleCallback != null) {
    idleCallback.run();
  }
}

异步流程中,promoteAndExecute方法:

private boolean promoteAndExecute() {
  assert (!Thread.holdsLock(this));
  List executableCalls = new ArrayList<>();
  boolean isRunning;
  synchronized (this) {
    for (Iterator i = readyAsyncCalls.iterator(); i.hasNext(); ) {
      AsyncCall asyncCall = i.next();
      if (runningAsyncCalls.size() >= maxRequests) break; // Max capacity.
      if (asyncCall.callsPerHost().get() >= maxRequestsPerHost) continue; // Host max capacity.
      i.remove();
      asyncCall.callsPerHost().incrementAndGet();
      executableCalls.add(asyncCall);
      runningAsyncCalls.add(asyncCall);
    }
    isRunning = runningCallsCount() > 0;
  }
  for (int i = 0, size = executableCalls.size(); i < size; i++) {
    AsyncCall asyncCall = executableCalls.get(i);
    asyncCall.executeOn(executorService());
  }
  return isRunning;
}

会遍历异步等待线程队列,并对正在执行的异步线程队列进行最大请求size,以及每个host最大请求size进行检查。
把异步等待线程放到正在执行线程队列中,并在等待线程队列中删除该线程,这样就把等待线程变成正在执行线程。

Dispatcher

任务调度核心类,这个类,其实在同步和异步请求流程中已经介绍过,其最重要功能是负责请求的分发。
Dispatcher在OKHttpClient的Builder中被初始化:

public Builder() {
   dispatcher = new Dispatcher();
   .....
}
private int maxRequests = 64;
private int maxRequestsPerHost = 5;
private @Nullable Runnable idleCallback;
/** Executes calls. Created lazily. */
private @Nullable ExecutorService executorService;
/** Ready async calls in the order they'll be run. */
private final Deque readyAsyncCalls = new ArrayDeque<>();
/** Running asynchronous calls. Includes canceled calls that haven't finished yet. */
private final Deque runningAsyncCalls = new ArrayDeque<>();
/** Running synchronous calls. Includes canceled calls that haven't finished yet. */
private final Deque runningSyncCalls = new ArrayDeque<>();
  • maxRequests:最大请求并发请求数64
  • maxRequestsPerHost:每个主机的最大请求数5
  • executorService:线程池
  • readyAsyncCalls:异步等待线程队列
  • runningAsyncCalls:正在运行的异步线程队列
  • runningSyncCalls:正在运行的同步线程队列

线程池executorService的声明:

public synchronized ExecutorService executorService() {
  if (executorService == null) {
    executorService = new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60, TimeUnit.SECONDS,
        new SynchronousQueue<>(), Util.threadFactory("OkHttp Dispatcher", false));
  }
  return executorService;
}
  • 核心线程数为0,表示线程在空闲时不会被保留,等待一段时间后停止
  • 最大线程数Integer.MAX_VALUE,基本上就是可以创建线程无上限
  • keepAliveTime为60s,表示如果线程空闲时,最多只能存活60s

综合上诉,在OKHttp中,设置了不设上限的线程,不保留最小线程,线程空闲时,最大存活时间为60s,保证I/O任务中高阻塞低占用的过程,不会长时间卡在阻塞上。并通过maxRequestsmaxRequestsPerHost来控制并发最大请求数。

拦截器

在同步和异步请求中,具体的执行过程中都会调用到getResponseWithInterceptorChain方法,该方法添加了一系列的拦截器,它在OKHttp整理流程中处于非常重要的地位,

流程

方法实现:

Response getResponseWithInterceptorChain() throws IOException {
  // Build a full stack of interceptors.
  List interceptors = new ArrayList<>();
  interceptors.addAll(client.interceptors());
  interceptors.add(new RetryAndFollowUpInterceptor(client));
  interceptors.add(new BridgeInterceptor(client.cookieJar()));
  interceptors.add(new CacheInterceptor(client.internalCache()));
  interceptors.add(new ConnectInterceptor(client));
  if (!forWebSocket) {
    interceptors.addAll(client.networkInterceptors());
  }
  interceptors.add(new CallServerInterceptor(forWebSocket));
  Interceptor.Chain chain = new RealInterceptorChain(interceptors, transmitter, null, 0,
      originalRequest, this, client.connectTimeoutMillis(),
      client.readTimeoutMillis(), client.writeTimeoutMillis());
  boolean calledNoMoreExchanges = false;
  try {
    Response response = chain.proceed(originalRequest);
    if (transmitter.isCanceled()) {
      closeQuietly(response);
      throw new IOException("Canceled");
    }
    return response;
  } catch (IOException e) {
    calledNoMoreExchanges = true;
    throw transmitter.noMoreExchanges(e);
  } finally {
    if (!calledNoMoreExchanges) {
      transmitter.noMoreExchanges(null);
    }
  }
}

默认添加的拦截器:

  • RetryAndFollowUpInterceptor:负责失败重试以及重定向
  • BridgeInterceptor:负责把用户构造的请求转换为发送到服务器的请求、把服务器返回的响应转换为用户友好的响应
  • CacheInterceptor:负责读取缓存直接返回、更新缓存
  • ConnectInterceptor:负责和服务器建立连接
  • CallServerInterceptor:负责向服务器发送请求数据、从服务器读取响应数据

这是典型的责任链模式,通过Interceptor,把Request转换为Response,每个Interceptor都有各自的责任和逻辑。

interceptors.addAll(client.interceptors());
......
if (!forWebSocket) {
    interceptors.addAll(client.networkInterceptors());
  }

开发者可以自己定义Interceptor,在最开始或者发送请求前,对Request和Response进行处理。

HTTP实现

OKHttp中实现HTTP主要是在ConnectInterceptorCallServerInterceptor
ConnectInterceptor建立服务器之间的连接,CallServerInterceptor发送请求和读取响应。
OKHttp请求一个URL的流程:

  1. 根据请求的URL,createAddress方法会创建一个Address,用于连接服务器
  2. 检查address和routes,是否可以从ConnectionPool获取一个连接
  3. 如果没有获取到连接,会进行下一个路由选择(routeSelector),并且重新尝试从ConnectionPool获取一个连接。重试还是获取不到,就会重新创建一个连接(RealConnection)
  4. 获取连接后,它会与服务器建立一个直接的Socket连接、使用TLS安全通道(基于HTTP代理的HTTPS),或直接TLS连接
  5. 发送HTTP请求,并获取响应

ConnectInterceptor

在请求发送前的逻辑,都是ConnectInterceptor中实现,ConnectInterceptor的intercept,这个是3.14.2版本源码,和以前多版本稍微有些区别。

@Override public Response intercept(Chain chain) throws IOException {
  RealInterceptorChain realChain = (RealInterceptorChain) chain;
  Request request = realChain.request();
  Transmitter transmitter = realChain.transmitter();
  // We need the network to satisfy this request. Possibly for validating a conditional GET.
  boolean doExtensiveHealthChecks = !request.method().equals("GET");
  Exchange exchange = transmitter.newExchange(chain, doExtensiveHealthChecks);
  return realChain.proceed(request, transmitter, exchange);
}

Exchange可以传输HTTP请求和响应,并管理连接和事件。
newExchange方法调用:

/** Returns a new exchange to carry a new request and response. */
Exchange newExchange(Interceptor.Chain chain, boolean doExtensiveHealthChecks) {
  synchronized (connectionPool) {
    if (noMoreExchanges) {
      throw new IllegalStateException("released");
    }
    if (exchange != null) {
      throw new IllegalStateException("cannot make a new request because the previous response "
          + "is still open: please call response.close()");
    }
  }
  ExchangeCodec codec = exchangeFinder.find(client, chain, doExtensiveHealthChecks);
  Exchange result = new Exchange(this, call, eventListener, exchangeFinder, codec);
  ......
  }
}

find方法会最终执行ExchangeFinderfindConnection方法,在发送HTTP请求之前的逻辑,都是这个方法中实现。

  /**
   * Returns a connection to host a new stream. This prefers the existing connection if it exists,
   * then the pool, finally building a new connection.
   */
  private RealConnection findConnection(int connectTimeout, int readTimeout, int writeTimeout,
      int pingIntervalMillis, boolean connectionRetryEnabled) throws IOException {
    boolean foundPooledConnection = false;
    RealConnection result = null;
    Route selectedRoute = null;
    RealConnection releasedConnection;
    Socket toClose;
    synchronized (connectionPool) {
      if (transmitter.isCanceled()) throw new IOException("Canceled");
      ......

      if (result == null) {
        //2.根据 Address 从连接池获取连接
        // Attempt to get a connection from the pool.
        if (connectionPool.transmitterAcquirePooledConnection(address, transmitter, null, false)) {
          foundPooledConnection = true;
          result = transmitter.connection;
        } else if (nextRouteToTry != null) {
          selectedRoute = nextRouteToTry;
          nextRouteToTry = null;
        } else if (retryCurrentRoute()) {
          selectedRoute = transmitter.connection.route();
        }
      }
    }
    ......
    // 3. 重新选择路由
    // If we need a route selection, make one. This is a blocking operation.
    boolean newRouteSelection = false;
    if (selectedRoute == null && (routeSelection == null || !routeSelection.hasNext())) {
      newRouteSelection = true;
      routeSelection = routeSelector.next();
    }

    List routes = null;
    synchronized (connectionPool) {
      if (transmitter.isCanceled()) throw new IOException("Canceled");

      if (newRouteSelection) {
        // Now that we have a set of IP addresses, make another attempt at getting a connection from
        // the pool. This could match due to connection coalescing.
        routes = routeSelection.getAll();
        if (connectionPool.transmitterAcquirePooledConnection(
            address, transmitter, routes, false)) {
          foundPooledConnection = true;
          result = transmitter.connection;
        }
      }

      if (!foundPooledConnection) {
        if (selectedRoute == null) {
          selectedRoute = routeSelection.next();
        }
      
        // 3. 重新选择路由,创建新的 `RealConnection`
        // Create a connection and assign it to this allocation immediately. This makes it possible
        // for an asynchronous cancel() to interrupt the handshake we're about to do.
        result = new RealConnection(connectionPool, selectedRoute);
        connectingConnection = result;
      }
    }

    ......
    // 4. 进行 Socket 连接
    // Do TCP + TLS handshakes. This is a blocking operation.
    result.connect(connectTimeout, readTimeout, writeTimeout, pingIntervalMillis,
        connectionRetryEnabled, call, eventListener);
    connectionPool.routeDatabase.connected(result.route());

    Socket socket = null;
    synchronized (connectionPool) {
      connectingConnection = null;
      // Last attempt at connection coalescing, which only occurs if we attempted multiple
      // concurrent connections to the same host.
      if (connectionPool.transmitterAcquirePooledConnection(address, transmitter, routes, true)) {
        // We lost the race! Close the connection we created and return the pooled connection.
        result.noNewExchanges = true;
        socket = result.socket();
        result = transmitter.connection;
      } else {
        //把连接放入连接池中
        connectionPool.put(result);
        transmitter.acquireConnectionNoEvents(result);
      }
    }
    ......
    return result;
  }

HTTP 的连接主要是result.connect方法:

public void connect(int connectTimeout, int readTimeout, int writeTimeout,
      int pingIntervalMillis, boolean connectionRetryEnabled, Call call,
      EventListener eventListener){
   if (protocol != null) throw new IllegalStateException("already connected");
   ......
   while (true) {
      try {
        if (route.requiresTunnel()) {
          connectTunnel(connectTimeout, readTimeout, writeTimeout, call, eventListener);
          if (rawSocket == null) {
            // We were unable to connect the tunnel but properly closed down our resources.
            break;
          }
        } else {
          connectSocket(connectTimeout, readTimeout, call, eventListener);
        }
        establishProtocol(connectionSpecSelector, pingIntervalMillis, call, eventListener);
        eventListener.connectEnd(call, route.socketAddress(), route.proxy(), protocol);
        break;
      } catch (IOException e) {
        ......
      }
    }
    ......
}

在 for 循环中检查这个连接是否是隧道协议连接。
connectSocket连接socket,establishProtocol根据HTTP协议版本进行连接处理。
重点分析下connectSocket方法:

private void connectSocket(int connectTimeout, int readTimeout, Call call,
   EventListener eventListener) throws IOException {
   ......
   try {
      //连接 socket
      Platform.get().connectSocket(rawSocket, route.socketAddress(), connectTimeout);
    } catch (ConnectException e) {
      ConnectException ce = new ConnectException("Failed to connect to " + route.socketAddress());
      ce.initCause(e);
      throw ce;
    }

   try {
      source = Okio.buffer(Okio.source(rawSocket));
      sink = Okio.buffer(Okio.sink(rawSocket));
    } catch (NullPointerException npe) {
      if (NPE_THROW_WITH_NULL.equals(npe.getMessage())) {
        throw new IOException(npe);
      }
    }
}

使用 Okio,封装了Socket的读写操作, 建立连接后,就可以发送请求和获取响应。

CallServerInterceptor

CallServerInterceptor的intercept()方法里负责发送请求和获取响应。
具体操作都是通过Exchange来执行,Exchange通过各个功能模块再进行分发处理。
通过 Socket 发送 HTTP消息,会按照以下声明周期:

  • writeRequestHeaders发送 request Headers
  • 如果有 request body,就通过 Sink 发送request body,然后关闭 Sink
  • readResponseHeaders获取 response Headers
  • 通过Source读取 response body,然后关闭 Source

writeRequestHeaders

Exchange 调用writeRequestHeaders方法

public void writeRequestHeaders(Request request) throws IOException {
    try {
      eventListener.requestHeadersStart(call);
      codec.writeRequestHeaders(request);
      eventListener.requestHeadersEnd(call, request);
    } catch (IOException e) {
      eventListener.requestFailed(call, e);
      trackFailure(e);
      throw e;
    }
  }

实际执行的方法codec实现类Http1ExchangeCodec(前面根据HTTP协议版本选择)的writeRequest方法

/** Returns bytes of a request header for sending on an HTTP transport. */
public void writeRequest(Headers headers, String requestLine) throws IOException {
  if (state != STATE_IDLE) throw new IllegalStateException("state: " + state);
  sink.writeUtf8(requestLine).writeUtf8("\r\n");
  for (int i = 0, size = headers.size(); i < size; i++) {
    sink.writeUtf8(headers.name(i))
        .writeUtf8(": ")
        .writeUtf8(headers.value(i))
        .writeUtf8("\r\n");
  }
  sink.writeUtf8("\r\n");
  state = STATE_OPEN_REQUEST_BODY;
}

readResponseHeaders

读取响应头部,Http1ExchangeCodec的readResponseHeaders方法:

@Override public Response.Builder readResponseHeaders(boolean expectContinue) throws IOException {
  if (state != STATE_OPEN_REQUEST_BODY && state != STATE_READ_RESPONSE_HEADERS) {
    throw new IllegalStateException("state: " + state);
  }
  try {
    StatusLine statusLine = StatusLine.parse(readHeaderLine());
    Response.Builder responseBuilder = new Response.Builder()
        .protocol(statusLine.protocol)
        .code(statusLine.code)
        .message(statusLine.message)
        .headers(readHeaders());
    if (expectContinue && statusLine.code == HTTP_CONTINUE) {
      return null;
    } else if (statusLine.code == HTTP_CONTINUE) {
      state = STATE_READ_RESPONSE_HEADERS;
      return responseBuilder;
    }
    state = STATE_OPEN_RESPONSE_BODY;
    return responseBuilder;
  } catch (EOFException e) {
    // Provide more context if the server ends the stream before sending a response.
    String address = "unknown";
    if (realConnection != null) {
      address = realConnection.route().address().url().redact();
    }
    throw new IOException("unexpected end of stream on "
        + address, e);
  }
}

StatusLine解析HTTP版本信息,readHeaders()读取response header 信息。

/** Reads headers or trailers. */
private Headers readHeaders() throws IOException {
  Headers.Builder headers = new Headers.Builder();
  // parse the result headers until the first blank line
  for (String line; (line = readHeaderLine()).length() != 0; ) {
    Internal.instance.addLenient(headers, line);
  }
  return headers.build();
}

response body

解析 response body 内容:

if (forWebSocket && code == 101) {
  // Connection is upgrading, but we need to ensure interceptors see a non-null response body.
  response = response.newBuilder()
      .body(Util.EMPTY_RESPONSE)
      .build();
} else {
  response = response.newBuilder()
      .body(exchange.openResponseBody(response))
      .build();
}

如果不是websocket,调用Exchange的openResponseBody方法:

public ResponseBody openResponseBody(Response response) throws IOException {
  try {
    eventListener.responseBodyStart(call);
    String contentType = response.header("Content-Type");
    long contentLength = codec.reportedContentLength(response);
    Source rawSource = codec.openResponseBodySource(response);
    ResponseBodySource source = new ResponseBodySource(rawSource, contentLength);
    return new RealResponseBody(contentType, contentLength, Okio.buffer(source));
  } catch (IOException e) {
    eventListener.responseFailed(call, e);
    trackFailure(e);
    throw e;
  }
}

获取返回的 body,通过 Source 转换为需要的数据类型,ResponseBody提供的 string(),转换为 String 类型

public final String string() throws IOException {
  try (BufferedSource source = source()) {
    Charset charset = Util.bomAwareCharset(source, charset());
    return source.readString(charset);
  }
}

通过上述的分析,OKHttp是通过Okio操作Socket实现了Http协议,凭借高效的性能,Android系统从4.4版本开始,HTTP的实现已经替换为OKHttp。

参考

  • OKHttp源码解析(一)--初阶
  • 拆轮子系列:拆 OkHttp

你可能感兴趣的:(Android网络编程-OKHttp源码角度分析Http)