街景字符编码识别之数据扩增

数据扩增介绍

在深度学习中数据扩增方法非常重要,数据扩增可以增加训练集的样本,同时也可以有效缓解模型过拟合的情况,也可以给模型带来的更强的泛化能力。

数据扩增为什么有用?

在深度学习模型的训练过程中,数据扩增是必不可少的环节。现有深度学习的参数非常多,一般的模型可训练的参数量基本上都是万到百万级别,而训练集样本的数量很难有这么多。
其次数据扩增可以扩展样本空间,假设现在的分类模型需要对汽车进行分类,左边的是汽车A,右边为汽车B。如果不使用任何数据扩增方法,深度学习模型会从汽车车头的角度来进行判别,而不是汽车具体的区别。

有哪些数据扩增方法?

数据扩增方法有很多:从颜色空间、尺度空间到样本空间,同时根据不同任务数据扩增都有相应的区别。
对于图像分类,数据扩增一般不会改变标签;对于物体检测,数据扩增会改变物体坐标位置;对于图像分割,数据扩增会改变像素标签。

常见的数据扩增方法

在常见的数据扩增方法中,一般会从图像颜色、尺寸、形态、空间和像素等角度进行变换。当然不同的数据扩增方法可以自由进行组合,得到更加丰富的数据扩增方法。

以torchvision为例,常见的数据扩增方法包括:

transforms.CenterCrop 对图片中心进行裁剪
transforms.ColorJitter 对图像颜色的对比度、饱和度和零度进行变换
transforms.FiveCrop 对图像四个角和中心进行裁剪得到五分图像
transforms.Grayscale 对图像进行灰度变换
transforms.Pad 使用固定值进行像素填充
transforms.RandomAffine 随机仿射变换
transforms.RandomCrop 随机区域裁剪
transforms.RandomHorizontalFlip 随机水平翻转
transforms.RandomRotation 随机旋转
transforms.RandomVerticalFlip 随机垂直翻转
在本次赛题中,赛题任务是需要对图像中的字符进行识别,因此对于字符图片并不能进行翻转操作。比如字符6经过水平翻转就变成了字符9,会改变字符原本的含义。

常用的数据扩增库

  • torchvision

https://github.com/pytorch/vision
pytorch官方提供的数据扩增库,提供了基本的数据数据扩增方法,可以无缝与torch进行集成;但数据扩增方法种类较少,且速度中等;

  • imgaug

https://github.com/aleju/imgaug
imgaug是常用的第三方数据扩增库,提供了多样的数据扩增方法,且组合起来非常方便,速度较快;

  • albumentations

https://albumentations.readthedocs.io
是常用的第三方数据扩增库,提供了多样的数据扩增方法,对图像分类、语义分割、物体检测和关键点检测都支持,速度较快。

举例介绍

由于本次赛题我们使用Pytorch框架讲解具体的解决方案,接下来将是解决赛题的第一步使用Pytorch读取赛题数据。
在Pytorch中数据是通过Dataset进行封装,并通过DataLoder进行并行读取。所以我们只需要重载一下数据读取的逻辑就可以完成数据的读取。

import os, sys, glob, shutil, json
import cv2

from PIL import Image
import numpy as np

import torch
from torch.utils.data.dataset import Dataset
import torchvision.transforms as transforms

class SVHNDataset(Dataset):
    def __init__(self, img_path, img_label, transform=None):
        self.img_path = img_path
        self.img_label = img_label 
        if transform is not None:
            self.transform = transform
        else:
            self.transform = None

    def __getitem__(self, index):
        img = Image.open(self.img_path[index]).convert('RGB')

        if self.transform is not None:
            img = self.transform(img)
        
        # 原始SVHN中类别10为数字0
        lbl = np.array(self.img_label[index], dtype=np.int)
        lbl = list(lbl)  + (5 - len(lbl)) * [10]
        
        return img, torch.from_numpy(np.array(lbl[:5]))

    def __len__(self):
        return len(self.img_path)

train_path = glob.glob('../input/train/*.png')
train_path.sort()
train_json = json.load(open('../input/train.json'))
train_label = [train_json[x]['label'] for x in train_json]

data = SVHNDataset(train_path, train_label,
          transforms.Compose([
              # 缩放到固定尺寸
              transforms.Resize((64, 128)),

              # 随机颜色变换
              transforms.ColorJitter(0.2, 0.2, 0.2),

              # 加入随机旋转
              transforms.RandomRotation(5),

              # 将图片转换为pytorch 的tesntor
              # transforms.ToTensor(),

              # 对图像像素进行归一化
              # transforms.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225])
            ]))

通过上述代码,可以将赛题的图像数据和对应标签进行读取,在读取过程中的进行数据扩增

接下来我们将在定义好的Dataset基础上构建DataLoder,你可以会问有了Dataset为什么还要有DataLoder?其实这两个是两个不同的概念,是为了实现不同的功能。

Dataset:对数据集的封装,提供索引方式的对数据样本进行读取
DataLoder:对Dataset进行封装,提供批量读取的迭代读取
加入DataLoder后,数据读取代码改为如下:

import os, sys, glob, shutil, json
import cv2

from PIL import Image
import numpy as np

import torch
from torch.utils.data.dataset import Dataset
import torchvision.transforms as transforms

class SVHNDataset(Dataset):
    def __init__(self, img_path, img_label, transform=None):
        self.img_path = img_path
        self.img_label = img_label 
        if transform is not None:
            self.transform = transform
        else:
            self.transform = None

    def __getitem__(self, index):
        img = Image.open(self.img_path[index]).convert('RGB')

        if self.transform is not None:
            img = self.transform(img)
        
        # 原始SVHN中类别10为数字0
        lbl = np.array(self.img_label[index], dtype=np.int)
        lbl = list(lbl)  + (5 - len(lbl)) * [10]
        
        return img, torch.from_numpy(np.array(lbl[:5]))

    def __len__(self):
        return len(self.img_path)

train_path = glob.glob('../input/train/*.png')
train_path.sort()
train_json = json.load(open('../input/train.json'))
train_label = [train_json[x]['label'] for x in train_json]

train_loader = torch.utils.data.DataLoader(
        SVHNDataset(train_path, train_label,
                   transforms.Compose([
                       transforms.Resize((64, 128)),
                       transforms.ColorJitter(0.3, 0.3, 0.2),
                       transforms.RandomRotation(5),
                       transforms.ToTensor(),
                       transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
            ])), 
    batch_size=10, # 每批样本个数
    shuffle=False, # 是否打乱顺序
    num_workers=10, # 读取的线程个数
)

for data in train_loader:
    break

在加入DataLoder后,数据按照批次获取,每批次调用Dataset读取单个样本进行拼接。此时data的格式为:
torch.Size([10, 3, 64, 128]), torch.Size([10, 6])
前者为图像文件,为batchsize * chanel * height * width次序;后者为字符标签。

你可能感兴趣的:(街景字符编码识别之数据扩增)