Powered by:NEFU AB-IN
博主个人的暴力题解,基本很少是正解,求轻喷
模拟即可,本身想用Python自带的datetime库,结果发现年不能开那么大,就直接手写了
'''
Author: NEFU AB-IN
Date: 2023-04-08 14:15:52
FilePath: \Vscode\ACM\LanQiao\2023PythonA\a.py
LastEditTime: 2023-04-08 14:19:47
'''
# AB-IN AK Lanqiao !!
# http://222.27.161.91/home.page
# aR7H4tDF
import sys, math
from collections import Counter, deque, defaultdict
from bisect import bisect_left, bisect_right
from heapq import heappop, heappush, heapify
from typing import *
from datetime import datetime, timedelta
N = int(1e6 + 10)
INF = int(2e9)
sys.setrecursionlimit(INF)
read = lambda: map(int, input().split())
class sa:
def __init__(self, y, m, d):
self.y = y
self.m = m
self.d = d
def __lt__(self, x):
pass
# ---------------divrsion line ----------------
# t1 = datetime(2000, 1, 1)
# t2 = datetime(2000, 1, 2)
# ans = 0
# while True:
# if t1.year % t1.month == 0 and t1.year % t1.day == 0:
# ans += 1
# t1 = t1 + timedelta(days=1)
# if t1 == t2:
# break
# print(ans)
mouths = [0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
def func(t1):
y, m, d = t1.y, t1.m, t1.d
if (y % 4 == 0 and y % 100) or (y % 400 == 0):
mouths[2] = 29
else:
mouths[2] = 28
d += 1
if d > mouths[m]:
d = 1
m += 1
if m > 12:
m = 1
y += 1
return sa(y, m, d)
t1 = sa(2000, 1, 1)
t2 = sa(2000000, 1, 2)
ans = 0
while True:
if t1.y % t1.m == 0 and t1.y % t1.d == 0:
ans += 1
t1 = func(t1)
if t1.y == t2.y and t1.m == t2.m and t1.d == t2.d:
break
print(ans)
# 35813063
DFS爆搜即可
# AB-IN AK Lanqiao !!
import sys, math
from collections import Counter, deque, defaultdict
from bisect import bisect_left, bisect_right
from heapq import heappop, heappush, heapify
from typing import *
from datetime import datetime, timedelta
N = int(1e6 + 10)
INF = int(2e9)
sys.setrecursionlimit(INF)
read = lambda : map(int, input().split())
class sa:
def __init__(self, x, y):
self.x = x
self.y = y
def __lt__(self, x):
pass
# ---------------divrsion line ----------------
# 两种糖果分别有 9 个和 16 个,要全部分给 7 个小朋友,每个小朋友得到
# 的糖果总数最少为 2 个最多为 5 个,问有多少种不同的分法。
ans = 0
def dfs(sum1, sum2, cnt):
global ans
if sum1 < 0 or sum2 < 0:
return
if cnt == 8:
if sum1 == 0 and sum2 == 0:
ans += 1
return
for i in range(2, 6):
dfs(sum1 - i, sum2, cnt + 1)
for i in range(2, 6):
dfs(sum1, sum2 - i, cnt + 1)
for i in range(2, 6):
for j in range(2, 6):
if i + j >= 2 and i + j <= 5:
dfs(sum1 - i, sum2 - j, cnt + 1)
dfs(9, 16, 1)
print(ans)
# 148540
直接没思路,一看到数据范围瞬间怂了,脑子里想的只有暴力,这个题是留到最后写的,就写了个最差的二进制枚举
# AB-IN AK Lanqiao !!
import sys, math
from collections import Counter, deque, defaultdict
from bisect import bisect_left, bisect_right
from heapq import heappop, heappush, heapify
from typing import *
from datetime import datetime, timedelta
N = int(1e6 + 10)
INF = int(2e9)
sys.setrecursionlimit(INF)
read = lambda : map(int, input().split())
class sa:
def __init__(self, x, y):
self.x = x
self.y = y
def __lt__(self, x):
pass
# ---------------divrsion line ----------------
# 最差方法 二进制枚举
n, = read()
a = list(read())
b = list(read())
c = list(read())
ans = 0
for i in range(1 << n):
A, B, C, cnt = 0, 0, 0, 0
for j in range(n):
if i & 1 << j:
A += a[j]
B += b[j]
C += c[j]
cnt += 1
if A > B + C or B > A + C or C > A + B:
ans = max(ans, cnt)
print(ans if ans != 0 else -1)
唯一一个觉得暴力是正解的题
就是每个数最多就是n//10
个,所以就去掉多的数,然后是那些数中代价小的,最后采用了前缀和优化了一下
# AB-IN AK Lanqiao !!
import sys, math
from collections import Counter, deque, defaultdict
from bisect import bisect_left, bisect_right
from heapq import heappop, heappush, heapify
from typing import *
from datetime import datetime, timedelta
N = int(1e6 + 10)
INF = int(2e9)
sys.setrecursionlimit(INF)
read = lambda : map(int, input().split())
class sa:
def __init__(self, a, b):
self.a = a
self.b = b
def __lt__(self, t):
if self.a != t.a:
return self.a < t.a
return self.b < t.b
# ---------------divrsion line ----------------
n, = read()
lst = [[] for _ in range(10)]
for i in range(n):
a, b = read()
lst[a].append(b)
for i in range(10):
lst[i].sort()
lst[i] = [0, *lst[i]]
# 前缀和
for j in range(1, len(lst[i])):
lst[i][j] += lst[i][j - 1]
# 保留的个数
k = n // 10
ans = 0
for i in range(10):
l = len(lst[i]) - 1
if l > k:
ans += (lst[i][l - k])
print(ans)
BFS暴力,不会剪枝,剪枝想了一种,但是没有证明正确性,所以就没有采用
# AB-IN AK Lanqiao !!
import sys, math
from collections import Counter, deque, defaultdict
from bisect import bisect_left, bisect_right
from heapq import heappop, heappush, heapify
from typing import *
from datetime import datetime, timedelta
N = int(1e6 + 10)
INF = int(2e9)
sys.setrecursionlimit(INF)
read = lambda : map(int, input().split())
class sa:
def __init__(self, s, step):
self.s = s
self.step = step
def __lt__(self, x):
pass
# ---------------divrsion line ----------------
# BFS暴力 不会剪枝 没证明剪枝一定正确
def solve():
t = input()
s = input()
t = " " + t
s = " " + s
if t[1] != s[1] or t[-1] != s[-1]:
return -1
q = deque()
q.appendleft(sa(s, 0))
while len(q):
tp = q.pop()
s, step = tp.s, tp.step
if s == t:
return step
for i in range(2, len(s) - 1):
if s[i] == '0' and s[i - 1] == '1' and s[i + 1] == '1':
g = s[:i - 1] + "111" + s[i + 2:]
if g == t:
return step + 1
q.appendleft(sa(g, step + 1))
if s[i] == '1' and s[i - 1] == '0' and s[i + 1] == '0':
g = s[:i - 1] + "000" + s[i + 2:]
if g == t:
return step + 1
q.appendleft(sa(g, step + 1))
return -1
T, = read()
for _ in range(T):
print(solve())
这版是直接暴力做的
考试最后写了一点线段树优化,只不过只维护了行和列的最小值和最大值,但感觉Python写的线段树也优化不了多少
# AB-IN AK Lanqiao !!
import sys, math
from collections import Counter, deque, defaultdict
from bisect import bisect_left, bisect_right
from heapq import heappop, heappush, heapify
from typing import *
from datetime import datetime, timedelta
N = int(1e3 + 10)
MOD = 998244353
INF = int(2e9)
sys.setrecursionlimit(INF)
read = lambda : map(int, input().split())
class sa:
def __init__(self, x, y):
self.x = x
self.y = y
def __lt__(self, x):
pass
# ---------------divrsion line ----------------
# RMQ 问题 可写ST表 但我忘了...
# 暴力!
g = [[0] * N for _ in range(N)]
n, m, a, b = read()
def func(t1, t2):
mn, mx = INF, 0
for i in range(t1.x, t2.x + 1):
for j in range(t1.y, t2.y + 1):
mn = min(mn, g[i][j])
mx = max(mx, g[i][j])
return mx * mn % MOD
for i in range(1, n + 1):
g[i][1:] = read()
ans = 0
for i in range(1, n + 1):
for j in range(1, m + 1):
t1 = sa(i, j)
t2 = sa(i + a - 1, j + b - 1)
if i + a - 1 > n or j + b - 1 > m:
continue
ans = (ans + func(t1, t2)) % MOD
print(ans)
还是暴力,思路就是可以把共因子都提出来,剩下的加和,从提出来的共同的因子的最大值开始,让加和除以它,直到不能除了,就是答案
其中,用哈希表记录用过的阶乘值,预处理一些阶乘值
# AB-IN AK Lanqiao !!
import sys, math
from collections import Counter, deque, defaultdict
from bisect import bisect_left, bisect_right
from heapq import heappop, heappush, heapify
from typing import *
from datetime import datetime, timedelta
N = int(1e5 + 10)
INF = int(2e9)
sys.setrecursionlimit(INF)
read = lambda : map(int, input().split())
class sa:
def __init__(self, x, y):
self.x = x
self.y = y
def __lt__(self, x):
pass
# ---------------divrsion line ----------------
# 暴力!
# 预处理1 ~ 5000阶乘
dd = Counter()
cnt = 1
for i in range(1, 5000):
cnt *= i
dd[i] = cnt
# ---------------------------------------------
a = [0] * N
n, = read()
a[1:] = list(read())
d = Counter()
base = min(a[1:])
ans = 0
for i in range(1, n + 1):
tmp = 1
if a[i] < 5000:
d[a[i]] = dd[a[i]] // dd[base]
elif d[a[i]] == 0:
for j in range(a[i], base, -1):
tmp *= j
d[a[i]] = tmp
ans += d[a[i]]
while True:
if ans == 1 or ans % (base + 1) != 0:
break
base += 1
ans //= base
print(base)
还是暴力DFS
相当于搜满足条件的n位数,直接搜每一位即可,因为奇数位为奇数,偶数位为偶数
优化就是每次搜每一位的时候,和前面的四位数加和,判断是否小于等于m,如果不满足就直接不搜了
# AB-IN AK Lanqiao !!
import sys, math
from collections import Counter, deque, defaultdict
from bisect import bisect_left, bisect_right
from heapq import heappop, heappush, heapify
from typing import *
from datetime import datetime, timedelta
N = int(1e6 + 10)
INF = int(2e9)
MOD = 998244353
sys.setrecursionlimit(INF)
read = lambda : map(int, input().split())
class sa:
def __init__(self, x, y):
self.x = x
self.y = y
def __lt__(self, x):
pass
# ---------------divrsion line ----------------
# 感觉像数位dp,先打DFS暴力
# 想不出递推式 就优化暴力吧
n, m = read()
ji = ["1", "3", "5", "7", "9"]
ou = ["0", "2", "4", "6", "8"]
stji, stou = [0] * 5, [0] * 5
ans = 0
def dfs(s, d):
global ans
if d == n + 1:
ans = (ans + 1) % MOD
return
for i in range(5):
if d % 2 == 1:
cnt = int(ji[i])
for j in range(max(1, d - 4), d):
cnt += int(s[j])
if cnt <= m:
dfs(s + ji[i], d + 1)
if d % 2 == 0:
cnt = int(ou[i])
for j in range(max(1, d - 4), d):
cnt += int(s[j])
if cnt <= m:
dfs(s + ou[i], d + 1)
return
dfs(" ", 1)
print(ans % MOD)
没时间想了,就特判了几种情况
# AB-IN AK Lanqiao !!
import sys, math
from collections import Counter, deque, defaultdict
from bisect import bisect_left, bisect_right
from heapq import heappop, heappush, heapify
from typing import *
from datetime import datetime, timedelta
N = int(1e6 + 10)
INF = int(2e9)
sys.setrecursionlimit(INF)
read = lambda : map(int, input().split())
class sa:
def __init__(self, x, y):
self.x = x
self.y = y
def __lt__(self, x):
pass
# ---------------divrsion line ----------------
# 骗分
def solve(s):
d = Counter(s)
if len(s) == d['0']:
return 0
if len(s) == d['1']:
return len(s) // 2
if s == "00111011":
return 3
return d['1']
s = input()
print(solve(s))