- PyTorch学习笔记之基础函数篇(四)
熊猫Devin
深度学习之PyTorchpytorch学习笔记
文章目录2.8torch.logspace函数讲解2.9torch.ones函数2.10torch.rand函数2.11torch.randn函数2.12torch.zeros函数2.8torch.logspace函数讲解torch.logspace函数在PyTorch中用于生成一个在对数尺度上均匀分布的张量(tensor)。这意味着张量中的元素是按照对数间隔排列的,而不是线性间隔。这对于创建在数
- pytorch学习笔记(2)--Tensor
ToToBe
pytorch笔记1024程序员节
系列文章pytorch学习笔记(1)–QUICKSTARTpytorch学习笔记(2)–Tensorpytorch学习笔记(3)–数据集与数据导入pytorch学习笔记(4)–创建模型(BuildModel)pytorch学习笔记(5)–Autograd文章目录系列文章Tensor(张量)1.初始化张量2.张量的属性3.张量的操作1.类似numpy的索引和切片2.拼接3.算数操作4.单元素张量5.
- PyTorch学习笔记(三):softmax回归
FriendshipT
PyTorch学习笔记pytorch回归深度学习softmax
PyTorch学习笔记(三):softmax回归softmax回归分类问题softmax回归模型单样本分类的矢量计算表达式小批量样本分类的矢量计算表达式交叉熵损失函数模型预测及评价小结Torchvision获取数据集读取小批量PyTorch从零开始实现softmax获取和读取数据初始化模型参数实现softmax运算定义模型定义损失函数定义优化算法计算分类准确率训练模型预测小结PyTorch模块实现
- PyTorch学习笔记1
zt_d918
训练过程importtorch#batch_size,input_dimension,hidden_dimension,output_dimensionN,D_in,H,D_out=64,1000,100,10#模拟一个训练集x=torch.randn(N,D_in)y=torch.randn(N,D_out)#模型定义有多种方式,这里不提model#loss函数定义loss_fn=torch.n
- 小土堆pytorch学习笔记004
柠檬不萌只是酸i
深度学习pytorch学习笔记机器学习深度学习
目录1、神经网络的基本骨架-nn.Module的使用2、卷积操作实例3、神经网络-卷积层4、神经网络-最大池化的使用(1)最大池化画图理解:(2)代码实现:5、神经网络-非线性激活(1)代码实现(调用sigmoid函数)6、神经网络-线性层(1)代码7、网络搭建-小实战(1)完整代码1、神经网络的基本骨架-nn.Module的使用官网地址:pytorch里的nnimporttorchfromtor
- 小土堆pytorch学习笔记003 | 下载数据集dataset 及报错处理
柠檬不萌只是酸i
深度学习人工智能深度学习机器学习pytorchpython
目录1、下载数据集2、展示数据集里面的内容3、DataLoader的使用例子:结果展示:1、下载数据集#数据集importtorchvisiontrain_set=torchvision.datasets.CIFAR10(root="./test10_dataset",train=True,download=True)test_set=torchvision.datasets.CIFAR10(ro
- 小土堆pytorch学习笔记005 | 完结,✿✿ヽ(°▽°)ノ✿
柠檬不萌只是酸i
深度学习学习笔记pytorch机器学习深度学习
目录1、损失函数与反向传播2、如何在搭建的网络中使用损失函数呢?3、优化器4、现有网络模型的使用及修改例子:5、模型训练保存+读取(1)保存(2)读取6、完整的模型训练:(1)代码【model文件】:【主文件】:(2)运行截图:(3)绘图展示:(4)添加训练正确率的完整代码:(5)总结!!!:(6)使用GPU训练7、完整模型验证(1)代码(2)运行结果1、损失函数与反向传播①计算实际输出和目标之间
- 小土堆pytorch学习笔记002
柠檬不萌只是酸i
深度学习pytorch学习笔记
目录1、TensorBoard的使用(1)显示坐标:(2)显示图片:2、Transform的使用3、常见的Transforms(1)#ToTensor()(2)#Normalize()(3)#Resize()(4)#Compose()4、总结:1、TensorBoard的使用(1)显示坐标:fromtorch.utils.tensorboardimportSummaryWriterimportnu
- 【pytorch】pytorch学习笔记(续2)
小白冲鸭
pytorch学习笔记
p30:1.均方差(MeanSquaredError,MSE):(1)注意区分MSE和L2范数:L2范数要开根号,而MSE不需要开根号。用torch.norm函数求MSE的时候不要忘记加上pow(2)。求导:pytorch实现自动求导:第一种方法:torch.autograd.grad()设置w需要求导有两种方法:(1)在创建w之后,用来设置w需要求导。(2)在创建w的时候,用w=torch.te
- 【pytorch】pytorch学习笔记(续1)
小白冲鸭
pytorch学习笔记
p22:1.加减乘除:(1)add(a,b):等同于a+b。(2)sub(a,b):等同于a-b。(3)mul(a,b):等同于a*b。(4)div(a,b):等同于a/b。a//b表示整除。2.tensor的矩阵式相乘:matmul注意区分:(1)*:表示相同位置的元素相乘;(2).matmul:表示矩阵相乘。对于(2)矩阵的相乘,有三种方式:(1)torch.mm:只适用于二维的tensor,
- 【pytorch】pytorch学习笔记
小白冲鸭
pytorch学习笔记
(实践)p5:线性回归问题中损失函数为什么要使用均方误差?均方误差:即误差的平方和的平均数。p8:1.pytorch不是一个完备的语言库,而是一个对于数据的gpu加速库,所以其没有对string的内键支持,即pytorch的基本类型中不包含string。2.pytorch表示string的方法:(1)onehotencoding问题:1)两个单词之间的相关性并没有在onehot编码中得到体现;2)
- 【pytorch】pytorch学习笔记(续3)
小白冲鸭
pytorch学习笔记
p41:1.LeakReLU,SELU,softplus2.GPU加速:.to方法p42:不太懂p43:1.visdom,tensorbroadXp44:p45:1.如何检测过拟合?在train上表现很好,而在test上表现不好。test的目的(没有valset的时候):防止过拟合,选取最优参数。相当于是验证集。一般选取testaccuracy最高的那点停止训练,作为最优参数。p46:1.trai
- 小土堆pytorch学习笔记001
柠檬不萌只是酸i
深度学习pytorch学习笔记
1、Pytorch环境的配置与安装。(1)建议安装:Anaconda(2)检查显卡:GPU(3)管理环境(不同版本的pytorch版本不同):condacreate-npytorchpython=3.6(4)检测自己的电脑是否可以使用:2、pytorch编辑器的选择(1)pycharm(下载社区版)(2)jupyter(可以交互)启动本地的jupyter:3、为什么torch.cuda.is_av
- Pytorch学习笔记(2) Autograd(自动求导) —— PyTorch的核心
银色尘埃010
本文是Pytorch快速入门第二部分,主要学习记录,主要翻译PytorchAutograd部分教程原文autograd包是PyTorch中神经网络的核心部分。torch.autograd提供了类和函数,用来对任意标量函数进行求导。要想使用自动求导,只需要对已有的代码进行微小的改变。只需要将所有的tensor包含进Variable对象中即可。一、Tensor(张量)torch.Tensor是程序包的
- pytorch学习笔记(十)
満湫
学习笔记
一、损失函数举个例子比如说根据Loss提供的信息知道,解答题太弱了,需要多训练训练这个模块。Loss作用:1.算实际输出和目标之间的差距2.为我们更新输出提供一定的依据(反向传播)看官方文档每个输入输出相减取平均取绝对值再取平均第一个损失函数:L1Loss(差的绝对值取平均)需要注意输入输出N=batch_size你有多少个数据第一个损失函数:MSELoss(平方差误差,平方取平均)稳妥的写法是先
- pytorch学习笔记(八)
満湫
pytorch学习笔记
Sequential看看搭建了这个能不能更容易管理,CIFAR-10数据集进行看一下网络模型CIFAR-10模型123456789输入进过一次卷积,然后经过一次最大池化,尺寸变成16*16了,在经过一次卷积尺寸没变,紧接着进过了一次最大池化,变成了8*8,再经过一次卷积通道数改变32→64,再经过一次池化变成4*4,然后展平,最后输出。(1-2)根据图里面看,32×32经过卷积后的尺寸仍然是32×
- pytorch学习笔记(十一)
満湫
pytorch学习笔记
优化器学习把搭建好的模型拿来训练,得到最优的参数。importtorch.optimimporttorchvisionfromtorchimportnnfromtorch.nnimportSequential,Conv2d,MaxPool2d,Flatten,Linearfromtorch.utils.dataimportDataLoaderdataset=torchvision.datasets
- pytorch学习笔记(五)
満湫
学习笔记
关注不同的方法输入是什么类型,输出是什么类型。1.Compose主要关注初始化函数从作用内置call的调用方法两种,第一种,直接使用对象,不用使用点,直接调用的是__call__当要调用的时候直接写个Person()按住ctrl+P看看需要填啥参数。2.Totensor的使用输出结果如下3.Normalize归一化输入必须要tensor的均值,标准差,然后看图片的维度计算4.Resize给定的是一
- pytorch学习笔记
満湫
pytorch学习人工智能
torchvision处理图像的pytorch官网上看数据集的包,COCO数据集目标检测、语义分割,cifar物体识别预训练好的模型这个模块是图片的处理root-位置,train-创建的true是个训练集,transform前面是输出图片的数据类型,“3”是targetimporttorchvisionfromtorch.utils.tensorboardimportSummaryWriterda
- pytorch学习笔记(七 )
満湫
pytorch学习笔记
池化类似压缩最大池化-上采样例如给一个3的话就会生成一个3×3的窗口(生成相同的高和宽),给一个tuple就会给出一个相同的池化核。stride默认值就是核的大小dilation在卷积dialation设置之后每一个会和另外的差一个,空洞卷积ceilfloor模式(天花板、地板)floor就是向下取整。按下面的方法走,走的步数默认为核的大小取9个里面的最大值,走到右一图,这种情况只能覆盖6个,其他
- pytorch学习笔记(一)
乌拉圭没有壳
1、今天在学习60分钟pytorchtutorial中2、zip就是把2个数组糅在一起x=[1,2,3,4,5]y=[6,7,8,9,10]zip(x,y)[(1,6),(2,7),(3,8),(4,9),(5,10)]还可以方便建立字典。x=['bob','tom','kitty']>>>y=[80,90,95]>>>d=dict(zip(x,y))[('bob',80),('tom',90),
- Pytorch学习笔记 | GAN生成对抗网络 | 代码 | 生成mnist手写数字图片
惊鸿若梦一书生
Python深度学习pytorch学习笔记
文章目录GAN网络简介测试判别器和测试生成器测试判别器测试生成器首次生成图片(效果欠佳)生成图片(比较清晰,但还有差距)生成图片(继续优化,输入扩维)生成图片(继续优化,)GAN网络简介生成对抗网络(GAN,GenerativeAdversarialNetworks)是一种深度学习模型,由IanGoodfellow和他的同事在2014年首次提出。GAN是一种非常强大和独特的神经网络架构,用于生成新
- 『PyTorch学习笔记』分布式深度学习训练中的数据并行(DP/DDP) VS 模型并行
AI新视界
Pytorch学习笔记pytorch数据并行模型并行DataParallel
分布式深度学习训练中的数据并行(DP/DDP)VS模型并行文章目录一.介绍二.并行数据加载2.1.加载数据步骤2.2.PyTorch1.0中的数据加载器(Dataloader)三.数据并行3.1.DP(DataParallel)的基本原理3.1.1.从流程上理解3.1.2.从模式角度理解3.1.3.从操作系统角度看3.1.4.低效率3.2.DDP(DistributedDataParallel)的
- Pytorch学习笔记——autograd
岳野
学习笔记python机器学习深度学习
一、神经网络神经网络就是一个”万能的模型+误差修正函数“,每次根据训练得到的结果与预想结果进行误差分析,进而修改权值和阈值,一步一步得到能输出和预想结果一致的模型。机器学习可以看做是数理统计的一个应用,在数理统计中一个常见的任务就是拟合,也就是给定一些样本点,用合适的曲线揭示这些样本点随着自变量的变化关系。深度学习同样也是为了这个目的,只不过此时,样本点不再限定为(x,y)点对,而可以是由向量、矩
- PyTorch学习笔记
欢桑
pytorch学习深度学习
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录学习目标学习内容:一pytorch深度学习方法二构建一个简单神经网络三深度学习工作流和pytorch生态系统四基于pytorch构建CNN五RNN以及序列数据处理六生成对抗网络七强化学习八将pytorch用用于生产三种不同的方法总结学习目标4月份到来之前学完《PorTorch深度学习实战》学习内容:一pytorch深度学习方法
- Pytorch学习笔记(4)—LSTM序列生成模型
llddycidy
Pytorch学习笔记pytorch学习笔记
文章目录前言主要内容一、序列生成问题解决方法二、RNN的引入三、LongShortTermMemory(LSTM)4、序列生成音乐本文引用:前言掌握使用PyTorch构建LSTM模型的方法掌握使用LSTM生成MIDI音乐的方法主要内容如何用神经网络做序列生成?RNN与LSTM的工作原理RNN是如何记忆Pattern的?MIDI音乐的原理如何用LSTM作曲一、序列生成问题解决方法将生成问题转化成一个
- PyTorch学习笔记(二)——TensorBoard
routine1o1oo
pytorch
1用途1、训练过程中loss是如何变化的,是否正常或是否按预想的变化,选择什么样的模型2、模型在不同阶段的输出2需要导入的类和常用的方法fromtorch.utils.tensorboardimportSummaryWriterwriter.add_image()writer.add_scalar()查看SummaryWriter的官方文档直接向log_dir文件夹写入事件文件,可以被Tensor
- 【pytorch学习笔记03】pytorch完整模型训练套路
yierrrrr
DL学习笔记pytorch学习笔记
B站我是土堆视频学习笔记,链接:https://www.bilibili.com/video/BV1hE411t7RN/?spm_id_from=333.999.0.01.准备数据集train_data=torchvision.datasets.CIFAR10(root='./dataset',train=True,transform=torchvision.transforms.ToTensor
- PyTorch学习笔记
Junoxiang
pytorch学习笔记
1.item()→number方法:item()返回一个数只能用于只包含一个元素的张量。对于其他的张量,请查看方法tolist().该操作是不可微分的,即不可求导.(译者注:返回的结果是普通Python数据类型,自然不能调用backward()方法来进行梯度的反向传播)Example:例子:>>>x=torch.tensor([1.0])>>>x.item()1.02.Tensor(张量)中包含d
- PyTorch学习笔记(4)--神经网络模型的保存和导入
别管我啦就是说
Pytorch学习笔记pythonpytorch
1.numpy矩阵的保存importnumpyasnpa=np.array(2)np.save("nm.npy",a)a=np.load("nm.npy")2.模型的保存和导入将训练好的模型和参数保存下来,下一次使用的时候直接导入模型和参数,和一个已经训练好的神经网络模型一样保存模型importtorch#保存整个神经网络的结构和模型参数torch.save(mymodel,'mymodel.pk
- C/C++Win32编程基础详解视频下载
择善Zach
编程C++Win32
课题视频:C/C++Win32编程基础详解
视频知识:win32窗口的创建
windows事件机制
主讲:择善Uncle老师
学习交流群:386620625
验证码:625
--
- Guava Cache使用笔记
bylijinnan
javaguavacache
1.Guava Cache的get/getIfPresent方法当参数为null时会抛空指针异常
我刚开始使用时还以为Guava Cache跟HashMap一样,get(null)返回null。
实际上Guava整体设计思想就是拒绝null的,很多地方都会执行com.google.common.base.Preconditions.checkNotNull的检查。
2.Guava
- 解决ora-01652无法通过128(在temp表空间中)
0624chenhong
oracle
解决ora-01652无法通过128(在temp表空间中)扩展temp段的过程
一个sql语句后,大约花了10分钟,好不容易有一个结果,但是报了一个ora-01652错误,查阅了oracle的错误代码说明:意思是指temp表空间无法自动扩展temp段。这种问题一般有两种原因:一是临时表空间空间太小,二是不能自动扩展。
分析过程:
既然是temp表空间有问题,那当
- Struct在jsp标签
不懂事的小屁孩
struct
非UI标签介绍:
控制类标签:
1:程序流程控制标签 if elseif else
<s:if test="isUsed">
<span class="label label-success">True</span>
</
- 按对象属性排序
换个号韩国红果果
JavaScript对象排序
利用JavaScript进行对象排序,根据用户的年龄排序展示
<script>
var bob={
name;bob,
age:30
}
var peter={
name;peter,
age:30
}
var amy={
name;amy,
age:24
}
var mike={
name;mike,
age:29
}
var john={
- 大数据分析让个性化的客户体验不再遥远
蓝儿唯美
数据分析
顾客通过多种渠道制造大量数据,企业则热衷于利用这些信息来实现更为个性化的体验。
分析公司Gartner表示,高级分析会成为客户服务的关键,但是大数据分析的采用目前仅局限于不到一成的企业。 挑战在于企业还在努力适应结构化数据,疲于根据自身的客户关系管理(CRM)系统部署有效的分析框架,以及集成不同的内外部信息源。
然而,面对顾客通过数字技术参与而产生的快速变化的信息,企业需要及时作出反应。要想实
- java笔记4
a-john
java
操作符
1,使用java操作符
操作符接受一个或多个参数,并生成一个新值。参数的形式与普通的方法调用不用,但是效果是相同的。加号和一元的正号(+)、减号和一元的负号(-)、乘号(*)、除号(/)以及赋值号(=)的用法与其他编程语言类似。
操作符作用于操作数,生成一个新值。另外,有些操作符可能会改变操作数自身的
- 从裸机编程到嵌入式Linux编程思想的转变------分而治之:驱动和应用程序
aijuans
嵌入式学习
笔者学习嵌入式Linux也有一段时间了,很奇怪的是很多书讲驱动编程方面的知识,也有很多书将ARM9方面的知识,但是从以前51形式的(对寄存器直接操作,初始化芯片的功能模块)编程方法,和思维模式,变换为基于Linux操作系统编程,讲这个思想转变的书几乎没有,让初学者走了很多弯路,撞了很多难墙。
笔者因此写上自己的学习心得,希望能给和我一样转变
- 在springmvc中解决FastJson循环引用的问题
asialee
循环引用fastjson
我们先来看一个例子:
package com.elong.bms;
import java.io.OutputStream;
import java.util.HashMap;
import java.util.Map;
import co
- ArrayAdapter和SimpleAdapter技术总结
百合不是茶
androidSimpleAdapterArrayAdapter高级组件基础
ArrayAdapter比较简单,但它只能用于显示文字。而SimpleAdapter则有很强的扩展性,可以自定义出各种效果
ArrayAdapter;的数据可以是数组或者是队列
// 获得下拉框对象
AutoCompleteTextView textview = (AutoCompleteTextView) this
- 九封信
bijian1013
人生励志
有时候,莫名的心情不好,不想和任何人说话,只想一个人静静的发呆。有时候,想一个人躲起来脆弱,不愿别人看到自己的伤口。有时候,走过熟悉的街角,看到熟悉的背影,突然想起一个人的脸。有时候,发现自己一夜之间就长大了。 2014,写给人
- Linux下安装MySQL Web 管理工具phpMyAdmin
sunjing
PHPInstallphpMyAdmin
PHP http://php.net/
phpMyAdmin http://www.phpmyadmin.net
Error compiling PHP on CentOS x64
一、安装Apache
请参阅http://billben.iteye.com/admin/blogs/1985244
二、安装依赖包
sudo yum install gd
- 分布式系统理论
bit1129
分布式
FLP
One famous theory in distributed computing, known as FLP after the authors Fischer, Lynch, and Patterson, proved that in a distributed system with asynchronous communication and process crashes,
- ssh2整合(spring+struts2+hibernate)-附源码
白糖_
eclipsespringHibernatemysql项目管理
最近抽空又整理了一套ssh2框架,主要使用的技术如下:
spring做容器,管理了三层(dao,service,actioin)的对象
struts2实现与页面交互(MVC),自己做了一个异常拦截器,能拦截Action层抛出的异常
hibernate与数据库交互
BoneCp数据库连接池,据说比其它数据库连接池快20倍,仅仅是据说
MySql数据库
项目用eclipse
- treetable bug记录
braveCS
table
// 插入子节点删除再插入时不能正常显示。修改:
//不知改后有没有错,先做个备忘
Tree.prototype.removeNode = function(node) {
// Recursively remove all descendants of +node+
this.unloadBranch(node);
// Remove
- 编程之美-电话号码对应英语单词
bylijinnan
java算法编程之美
import java.util.Arrays;
public class NumberToWord {
/**
* 编程之美 电话号码对应英语单词
* 题目:
* 手机上的拨号盘,每个数字都对应一些字母,比如2对应ABC,3对应DEF.........,8对应TUV,9对应WXYZ,
* 要求对一段数字,输出其代表的所有可能的字母组合
- jquery ajax读书笔记
chengxuyuancsdn
jQuery ajax
1、jsp页面
<%@ page language="java" import="java.util.*" pageEncoding="GBK"%>
<%
String path = request.getContextPath();
String basePath = request.getScheme()
- JWFD工作流拓扑结构解析伪码描述算法
comsci
数据结构算法工作活动J#
对工作流拓扑结构解析感兴趣的朋友可以下载附件,或者下载JWFD的全部代码进行分析
/* 流程图拓扑结构解析伪码描述算法
public java.util.ArrayList DFS(String graphid, String stepid, int j)
- oracle I/O 从属进程
daizj
oracle
I/O 从属进程
I/O从属进程用于为不支持异步I/O的系统或设备模拟异步I/O.例如,磁带设备(相当慢)就不支持异步I/O.通过使用I/O 从属进程,可以让磁带机模仿通常只为磁盘驱动器提供的功能。就好像支持真正的异步I/O 一样,写设备的进程(调用者)会收集大量数据,并交由写入器写出。数据成功地写出时,写入器(此时写入器是I/O 从属进程,而不是操作系统)会通知原来的调用者,调用者则会
- 高级排序:希尔排序
dieslrae
希尔排序
public void shellSort(int[] array){
int limit = 1;
int temp;
int index;
while(limit <= array.length/3){
limit = limit * 3 + 1;
- 初二下学期难记忆单词
dcj3sjt126com
englishword
kitchen 厨房
cupboard 厨柜
salt 盐
sugar 糖
oil 油
fork 叉;餐叉
spoon 匙;调羹
chopsticks 筷子
cabbage 卷心菜;洋白菜
soup 汤
Italian 意大利的
Indian 印度的
workplace 工作场所
even 甚至;更
Italy 意大利
laugh 笑
m
- Go语言使用MySQL数据库进行增删改查
dcj3sjt126com
mysql
目前Internet上流行的网站构架方式是LAMP,其中的M即MySQL, 作为数据库,MySQL以免费、开源、使用方便为优势成为了很多Web开发的后端数据库存储引擎。MySQL驱动Go中支持MySQL的驱动目前比较多,有如下几种,有些是支持database/sql标准,而有些是采用了自己的实现接口,常用的有如下几种:
http://code.google.c...o-mysql-dri
- git命令
shuizhaosi888
git
---------------设置全局用户名:
git config --global user.name "HanShuliang" //设置用户名
git config --global user.email "
[email protected]" //设置邮箱
---------------查看环境配置
git config --li
- qemu-kvm 网络 nat模式 (四)
haoningabc
kvmqemu
qemu-ifup-NAT
#!/bin/bash
BRIDGE=virbr0
NETWORK=192.168.122.0
GATEWAY=192.168.122.1
NETMASK=255.255.255.0
DHCPRANGE=192.168.122.2,192.168.122.254
TFTPROOT=
BOOTP=
function check_bridge()
- 不要让未来的你,讨厌现在的自己
jingjing0907
生活 奋斗 工作 梦想
故事one
23岁,他大学毕业,放弃了父母安排的稳定工作,独闯京城,在家小公司混个小职位,工作还算顺手,月薪三千,混了混,混走了一年的光阴。 24岁,有了女朋友,从二环12人的集体宿舍搬到香山民居,一间平房,二人世界,爱爱爱。偶然约三朋四友,打扑克搓麻将,日子快乐似神仙; 25岁,出了几次差,调了两次岗,薪水涨了不过百,生猛狂飙的物价让现实血淋淋,无力为心爱银儿购件大牌
- 枚举类型详解
一路欢笑一路走
enum枚举详解enumsetenumMap
枚举类型详解
一.Enum详解
1.1枚举类型的介绍
JDK1.5加入了一个全新的类型的”类”—枚举类型,为此JDK1.5引入了一个新的关键字enum,我们可以这样定义一个枚举类型。
Demo:一个最简单的枚举类
public enum ColorType {
RED
- 第11章 动画效果(上)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Eclipse中jsp、js文件编辑时,卡死现象解决汇总
ljf_home
eclipsejsp卡死js卡死
使用Eclipse编辑jsp、js文件时,经常出现卡死现象,在网上百度了N次,经过N次优化调整后,卡死现象逐步好转,具体那个方法起到作用,不太好讲。将所有用过的方法罗列如下:
1、取消验证
windows–>perferences–>validation
把 除了manual 下面的全部点掉,build下只留 classpath dependency Valida
- MySQL编程中的6个重要的实用技巧
tomcat_oracle
mysql
每一行命令都是用分号(;)作为结束
对于MySQL,第一件你必须牢记的是它的每一行命令都是用分号(;)作为结束的,但当一行MySQL被插入在PHP代码中时,最好把后面的分号省略掉,例如:
mysql_query("INSERT INTO tablename(first_name,last_name)VALUES('$first_name',$last_name')");
- zoj 3820 Building Fire Stations(二分+bfs)
阿尔萨斯
Build
题目链接:zoj 3820 Building Fire Stations
题目大意:给定一棵树,选取两个建立加油站,问说所有点距离加油站距离的最大值的最小值是多少,并且任意输出一种建立加油站的方式。
解题思路:二分距离判断,判断函数的复杂度是o(n),这样的复杂度应该是o(nlogn),即使常数系数偏大,但是居然跑了4.5s,也是醉了。 判断函数里面做了3次bfs,但是每次bfs节点最多