input()输入
print()会依次打印每个字符串,遇到逗号“,”会输出一个空格
参照数学上的写法实现的
Python支持多种数据类型,在计算机内部,可以把任何数据都看成一个“对象”,而变量就是在程序中用来指向这些数据对象的,对变量赋值就是把数据和变量给关联起来。
在计算机内存中,统一使用Unicode编码,当需要保存到硬盘或者需要传输的时候,就转换为UTF-8编码。
用记事本编辑的时候,从文件读取的UTF-8字符被转换为Unicode字符到内存里,编辑完成后,保存的时候再把Unicode转换为UTF-8保存到文件:
浏览网页的时候,服务器会把动态生成的Unicode内容转换为UTF-8再传输到浏览器:
在最新的Python 3版本中,字符串是以Unicode编码的,也就是说,Python的字符串支持多语言
Python提供了ord()函数获取字符的整数表示,chr()函数把编码转换为对应的字符
>>> ord('A')
65
>>> ord('中')
20013
>>> chr(66)
'B'
>>> chr(25991)
'文'
由于Python的字符串类型是str,在内存中以Unicode表示,一个字符对应若干个字节。如果要在网络上传输,或者保存到磁盘上,就需要把str变为 以字节为单位的bytes。
Python对bytes类型的数据用带b前缀的单引号或双引号表示:
x = b'ABC'
你可能猜到了,%运算符就是用来格式化字符串的。在字符串内部,%s表示用字符串替换,%d表示用整数替换,有几个%?占位符,后面就跟几个变量或者值,顺序要对应好。如果只有一个%?,括号可以省略。
常见的占位符有:
占位符 替换内容
%d 整数
%f 浮点数
%s 字符串
%x 十六进制整数
其中,格式化整数和浮点数还可以指定是否补0和整数与小数的位数:
print('%2d-%02d' % (3, 1))
print('%.2f' % 3.1415926)
结果:
3-01
3.14
list和tuple是Python内置的有序集合,一个可变,一个不可变。根据需要来选择使用它们。
如果要取最后一个元素,除了计算索引位置外,还可以用-1做索引,直接获取最后一个元素。
里面的元素的数据类型也可以不同
list支持append、insert、pop等操作,tuple不支持
tuple所谓的“不变”是说,**tuple的每个元素,指向永远不变。**即指向’a’,就不能改成指向’b’,指向一个list,就不能改成指向其他对象,但指向的这个list本身是可变的!
Python内置了字典:dict的支持,dict全称dictionary,在其他语言中也称为map,使用键-值(key-value)存储,具有极快的查找速度。
为什么dict查找速度这么快?因为dict的实现原理和查字典是一样的。假设字典包含了1万个汉字,我们要查某一个字,一个办法是把字典从第一页往后翻,直到找到我们想要的字为止,这种方法就是在list中查找元素的方法,list越大,查找越慢。
第二种方法是先在字典的索引表里(比如部首表)查这个字对应的页码,然后直接翻到该页,找到这个字。无论找哪个字,这种查找速度都非常快,不会随着字典大小的增加而变慢。
和list比较,dict有以下几个特点:
查找和插入的速度极快,不会随着key的增加而变慢;
需要占用大量的内存,内存浪费多。
而list相反:
查找和插入的时间随着元素的增加而增加;
占用空间小,浪费内存很少。
所以,dict是用空间来换取时间的一种方法。
set和dict类似,也是一组key的集合,但不存储value。
由于key不能重复,所以,在set中,没有重复的key。
通过add(key)方法可以添加元素到set中,可以重复添加,但不会有效果;通过remove(key)方法可以删除元素;
set可以看成数学意义上的无序和无重复元素的集合,因此,两个set可以做数学意义上的交集、并集等操作:
>>> s1 = set([1, 2, 3])
>>> s2 = set([2, 3, 4])
>>> s1 & s2
{2, 3}
>>> s1 | s2
{1, 2, 3, 4}
条件语句使用格式如下:
if <条件判断1>:
<执行1>
elif <条件判断2>:
<执行2>
elif <条件判断3>:
<执行3>
else:
<执行4>
只要x是非零数值、非空字符串、非空list等,就判断为True,否则为False。
if x:
print('True')
函数就是最基本的一种代码抽象的方式
Python内置了很多有用的函数,我们可以直接调用。
要调用一个函数,需要知道函数的名称和参数,比如求绝对值的函数abs,只有一个参数。可以直接从Python的官方网站查看文档:
http://docs.python.org/3/library/functions.html#abs
也可以在交互式命令行通过help(abs)查看abs函数的帮助信息。
pass语句什么都不做,那有什么用?实际上pass可以用来作为占位符,比如现在还没想好怎么写函数的代码,就可以先放一个pass,让代码能运行起来。
if age >= 18:
pass
让我们修改一下my_abs的定义,对参数类型做检查,只允许整数和浮点数类型的参数。数据类型检查可以用内置函数isinstance()实现:
def my_abs(x):
if not isinstance(x, (int, float)):
raise TypeError('bad operand type')
if x >= 0:
return x
else:
return -x
原来返回值是一个tuple!但是,在语法上,返回一个tuple可以省略括号,而多个变量可以同时接收一个tuple,按位置赋给对应的值,所以,Python的函数返回多值其实就是返回一个tuple,但写起来更方便。
>>> r = move(100, 100, 60, math.pi / 6)
>>> print(r)
(151.96152422706632, 70.0)
函数参数种类
def power(x, n=2):
s = 1
while n > 0:
n = n - 1
s = s * x
return s
定义默认参数牢记一点:默认参数要指向不可变对象
为什么要设计str、None这样的不变对象呢?因为不变对象一旦创建,对象内部的数据就不能修改,这样就减少了由于修改数据导致的错误。
def calc(*numbers):
sum = 0
for n in numbers:
sum = sum + n * n
return sum
定义可变参数和定义一个list或tuple参数相比,仅仅在参数前面加了一个星号。在函数内部,参数numbers接收到的是一个tuple,因此,函数代码完全不变。但是,调用该函数时,可以传入任意个参数,包括0个参数。
Python允许你在list或tuple前面加一个星号,把list或tuple的元素变成可变参数传进去
>>> nums = [1, 2, 3]
>>> calc(*nums)
14
def person(name, age, **kw):
print('name:', name, 'age:', age, 'other:', kw)
函数person除了必选参数name和age外,还接受关键字参数kw。
>>> person('Bob', 35, city='Beijing')
name: Bob age: 35 other: {'city': 'Beijing'}
>>> person('Adam', 45, gender='M', job='Engineer')
name: Adam age: 45 other: {'gender': 'M', 'job': 'Engineer'}
只接收city和job作为关键字参数。这种方式定义的函数如下:
def person(name, age, *, city, job):
print(name, age, city, job)
参数定义的顺序必须是:必选参数、默认参数、可变参数、命名关键字参数和关键字参数。
递归函数的例子:
def fact(n):
if n==1:
return 1
return n * fact(n - 1)
如果我们计算fact(5),可以根据函数定义看到计算过程如下:
===> fact(5)
===> 5 * fact(4)
===> 5 * (4 * fact(3))
===> 5 * (4 * (3 * fact(2)))
===> 5 * (4 * (3 * (2 * fact(1))))
===> 5 * (4 * (3 * (2 * 1)))
===> 5 * (4 * (3 * 2))
===> 5 * (4 * 6)
===> 5 * 24
===> 120
递归函数的优点是定义简单,逻辑清晰。理论上,所有的递归函数都可以写成循环的方式,但循环的逻辑不如递归清晰。
使用递归函数需要注意防止栈溢出。在计算机中,函数调用是通过栈(stack)这种数据结构实现的,每当进入一个函数调用,栈就会加一层栈帧,每当函数返回,栈就会减一层栈帧。由于栈的大小不是无限的,所以,递归调用的次数过多,会导致栈溢出。
解决递归调用栈溢出的方法是通过尾递归优化。
尾递归是指,在函数返回的时候,调用自身本身,并且,return语句不能包含表达式。这样,编译器或者解释器就可以把尾递归做优化,使递归本身无论调用多少次,都只占用一个栈帧,不会出现栈溢出的情况。
def fact(n):
return fact_iter(n, 1)
def fact_iter(num, product):
if num == 1:
return product
return fact_iter(num - 1, num * product)
可以看到,return fact_iter(num - 1, num * product)仅返回递归函数本身,num - 1和num * product在函数调用前就会被计算,不影响函数调用。
fact(5)对应的fact_iter(5, 1)的调用如下:
===> fact_iter(5, 1)
===> fact_iter(4, 5)
===> fact_iter(3, 20)
===> fact_iter(2, 60)
===> fact_iter(1, 120)
===> 120
1. 切片
对这种经常取指定索引范围的操作,用循环十分繁琐,因此,Python提供了切片(Slice)操作符,能大大简化这种操作。
>>> L = ['Michael', 'Sarah', 'Tracy', 'Bob', 'Jack']
>>> L[0:3]
['Michael', 'Sarah', 'Tracy']
L[0:3]表示,从索引0开始取,直到索引3为止,但不包括索引3。即索引0,1,2,正好是3个元素。
类似的,既然Python支持L[-1]取倒数第一个元素,那么它同样支持倒数切片,试试:
>>> L[-2:]
['Bob', 'Jack']
>>> L[-2:-1]
['Bob']
支持间隔获取,前10个数,每两个取一个:
>>> L = list(range(100))
>>> L
[0, 1, 2, 3, ..., 99]
>>> L[:10:2]
[0, 2, 4, 6, 8]
tuple也是一种list,唯一区别是tuple不可变。因此,tuple也可以用切片操作,只是操作的结果仍是tuple。
字符串’xxx’也可以看成是一种list,每个元素就是一个字符。因此,字符串也可以用切片操作,只是操作结果仍是字符串。
在很多编程语言中,针对字符串提供了很多各种截取函数(例如,substring),其实目的就是对字符串切片。Python没有针对字符串的截取函数,只需要切片一个操作就可以完成,非常简单。
2. 迭代
当我们使用for循环时,只要作用于一个可迭代对象,for循环就可以正常运行,而我们不太关心该对象究竟是list还是其他数据类型。
默认情况下,dict迭代的是key。如果要迭代value,可以用for value in d.values(),如果要同时迭代key和value,可以用for k, v in d.items()。
>>> d = {'a': 1, 'b': 2, 'c': 3}
>>> for key in d:
... print(key)
...
a
c
b
那么,如何判断一个对象是可迭代对象呢?方法是通过collections模块的Iterable类型判断:
>>> from collections import Iterable
>>> isinstance('abc', Iterable) # str是否可迭代
True
>>> isinstance([1,2,3], Iterable) # list是否可迭代
True
>>> isinstance(123, Iterable) # 整数是否可迭代
False
Python内置的enumerate函数可以把一个list变成索引-元素对,这样就可以在for循环中同时迭代索引和元素本身:
>>> for i, value in enumerate(['A', 'B', 'C']):
... print(i, value)
...
0 A
1 B
2 C
3. 列表生成式
列表生成式即List Comprehensions,是Python内置的非常简单却强大的可以用来创建list的生成式。
举个例子,要生成list [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]可以用list(range(1, 11)):
>>> list(range(1, 11))
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
如果要生成[1x1, 2x2, 3x3, …, 10x10],则使用:
>>> [x * x for x in range(1, 11)]
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
写列表生成式时,把要生成的元素x * x放到前面,后面跟for循环,就可以把list创建出来
for循环后面还可以加上if判断,这样我们就可以筛选出仅偶数的平方:
>>> [x * x for x in range(1, 11) if x % 2 == 0]
[4, 16, 36, 64, 100]
还可以使用两层循环,可以生成全排列:
>>> [m + n for m in 'ABC' for n in 'XYZ']
['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']
for循环其实可以同时使用两个甚至多个变量,比如dict的items()可以同时迭代key和value:
>>> d = {'x': 'A', 'y': 'B', 'z': 'C' }
>>> for k, v in d.items():
... print(k, '=', v)
...
y = B
x = A
z = C
>>> [k + '=' + v for k, v in d.items()]
['y=B', 'x=A', 'z=C']
4. 生成器
所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。
创建一个generator,并把它打印出来:
>>> g = (x * x for x in range(10))
>>> g
at 0x1022ef630>
>>> g = (x * x for x in range(10))
>>> for n in g:
... print(n)
...
0
1
4
9
16
25
36
49
64
81
generator保存的是算法,每次调用next(g),就计算出g的下一个元素的值,直到计算到最后一个元素。
还有定义generator的另一种方法。如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator:
def fib(max):
n, a, b = 0, 0, 1
while n < max:
yield b
a, b = b, a + b
n = n + 1
return 'done'
>>> f = fib(6)
>>> f
这里,最难理解的就是generator和函数的执行流程不一样。函数是顺序执行,遇到return语句或者最后一行函数语句就返回。
而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。
5. 迭代器
可以直接作用于for循环的对象统称为可迭代对象:Iterable。
使用isinstance()判断一个对象是否是Iterable对象:
>>> from collections import Iterable
>>> isinstance([], Iterable)
True
>>> isinstance({}, Iterable)
True
>>> isinstance('abc', Iterable)
True
>>> isinstance((x for x in range(10)), Iterable)
True
>>> isinstance(100, Iterable)
False
可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator。
使用isinstance()判断一个对象是否是Iterator对象:
>>> from collections import Iterator
>>> isinstance((x for x in range(10)), Iterator)
True
>>> isinstance([], Iterator)
False
>>> isinstance({}, Iterator)
False
>>> isinstance('abc', Iterator)
False
生成器都是Iterator对象,但list、dict、str虽然是Iterable,却不是Iterator。
把list、dict、str等Iterable变成Iterator可以使用iter()函数:
>>> isinstance(iter([]), Iterator)
True
>>> isinstance(iter('abc'), Iterator)
True
Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。
函数是Python内建支持的一种封装,我们通过把大段代码拆成函数,通过一层一层的函数调用,就可以把复杂任务分解成简单的任务,这种分解可以称之为面向过程的程序设计。
函数就是面向过程的程序设计的基本单元。
对应到编程语言,就是越低级的语言,越贴近计算机,抽象程度低,执行效率高,比如C语言;越高级的语言,越贴近计算,抽象程度高,执行效率低,比如Lisp语言。
函数本身也可以赋值给变量,即:变量可以指向函数,函数名本质是也是一个变量,它指向一个函数。
>>> f = abs
>>> f(-10)
10
既然变量可以指向函数,函数的参数能接收变量,那么一个函数就可以接收另一个函数作为参数,这种函数就称之为高阶函数。
def add(x, y, f):
return f(x) + f(y)
map的使用
我们先看map。map()函数接收两个参数,一个是函数,一个是Iterable,map将传入的函数依次作用到序列的每个元素,并把结果作为新的Iterator返回。
举例说明,比如我们有一个函数f(x)=x2,要把这个函数作用在一个list [1, 2, 3, 4, 5, 6, 7, 8, 9]上,就可以用map()实现如下:
>>> def f(x):
... return x * x
...
>>> r = map(f, [1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> list(r)
[1, 4, 9, 16, 25, 36, 49, 64, 81]
所以,map()作为高阶函数,事实上它把运算规则抽象了,因此,我们不但可以计算简单的f(x)=x2,还可以计算任意复杂的函数,比如,把这个list所有数字转为字符串:
>>> list(map(str, [1, 2, 3, 4, 5, 6, 7, 8, 9]))
['1', '2', '3', '4', '5', '6', '7', '8', '9']
reduce的使用
reduce把一个函数作用在一个序列[x1, x2, x3, …]上,这个函数必须接收两个参数,reduce把结果继续和序列的下一个元素做累积计算,其效果就是:
reduce(f, [x1, x2, x3, x4]) = f(f(f(x1, x2), x3), x4)
比方说对一个序列求和,就可以用reduce实现:
>>> from functools import reduce
>>> def add(x, y):
... return x + y
...
>>> reduce(add, [1, 3, 5, 7, 9])
25
filter的使用
Python内建的filter()函数用于过滤序列。
和map()类似,filter()也接收一个函数和一个序列。和map()不同的是,filter()把传入的函数依次作用于每个元素,然后根据返回值是True还是False决定保留还是丢弃该元素。
例如,在一个list中,删掉偶数,只保留奇数,可以这么写:
def is_odd(n):
return n % 2 == 1
list(filter(is_odd, [1, 2, 4, 5, 6, 9, 10, 15]))
# 结果: [1, 5, 9, 15]
注意到filter()函数返回的是一个Iterator,也就是一个惰性序列,所以要强迫filter()完成计算结果,需要用list()函数获得所有结果并返回list。
因为Iterator是惰性计算的序列,所以我们可以用Python表示“全体自然数”,“全体素数”这样的序列,而代码非常简洁。
sorted的使用
排序也是在程序中经常用到的算法。无论使用冒泡排序还是快速排序,排序的核心是比较两个元素的大小。直接比较数学上的大小是没有意义的,因此,比较的过程必须通过函数抽象出来。
Python内置的sorted()函数就可以对list进行排序:
>>> sorted([36, 5, -12, 9, -21])
[-21, -12, 5, 9, 36]
它还可以接收一个key函数来实现自定义的排序,例如按绝对值大小排序:
>>> sorted([36, 5, -12, 9, -21], key=abs)
[5, 9, -12, -21, 36]
默认情况下,对字符串排序,是按照ASCII的大小比较的,由于’Z’ < ‘a’,结果,大写字母Z会排在小写字母a的前面。
要进行反向排序,不必改动key函数,可以传入第三个参数reverse=True:
>>> sorted(['bob', 'about', 'Zoo', 'Credit'], key=str.lower, reverse=True)
['Zoo', 'Credit', 'bob', 'about']
高阶函数除了可以接受函数作为参数外,还可以把函数作为结果值返回。
def lazy_sum(*args):
def sum():
ax = 0
for n in args:
ax = ax + n
return ax
return sum
当我们调用lazy_sum()时,返回的并不是求和结果,而是求和函数:
>>> f = lazy_sum(1, 3, 5, 7, 9)
>>> f
.sum at 0x101c6ed90>
>>> f()
25
在这个例子中,我们在函数lazy_sum中又定义了函数sum,并且,内部函数sum可以引用外部函数lazy_sum的参数和局部变量,当lazy_sum返回函数sum时,相关参数和变量都保存在返回的函数中,这种称为“闭包(Closure)”的程序结构拥有极大的威力。
返回闭包时牢记一点:返回函数不要引用任何循环变量,或者后续会发生变化的变量。
在Python中,对匿名函数提供了有限支持。还是以map()函数为例,计算f(x)=x2时,除了定义一个f(x)的函数外,还可以直接传入匿名函数:
>>> list(map(lambda x: x * x, [1, 2, 3, 4, 5, 6, 7, 8, 9]))
[1, 4, 9, 16, 25, 36, 49, 64, 81]
通过对比可以看出,匿名函数lambda x: x * x实际上就是:
def f(x):
return x * x
关键字lambda表示匿名函数,冒号前面的x表示函数参数。
匿名函数有个限制,就是只能有一个表达式,不用写return,返回值就是该表达式的结果。
函数对象有一个__name__属性,可以拿到函数的名字:
>>> def now():
... print('2015-3-25')
...
>>> f = now
>>> f()
2015-3-25
>>> now.__name__
'now'
>>> f.__name__
'now'
本质上,decorator就是一个返回函数的高阶函数。所以,我们要定义一个能打印日志的decorator,可以定义如下:
def log(func):
def wrapper(*args, **kw):
print('call %s():' % func.__name__)
return func(*args, **kw)
return wrapper
我们要借助Python的@语法,把decorator置于函数的定义处:
@log
def now():
print('2015-3-25')
>>> now()
call now():
2015-3-25
把@log放到now()函数的定义处,相当于执行了语句:
now = log(now)
由于log()是一个decorator,返回一个函数,所以,原来的now()函数仍然存在,只是现在同名的now变量指向了新的函数,于是调用now()将执行新函数,即在log()函数中返回的wrapper()函数。
在面向对象(OOP)的设计模式中,decorator被称为装饰模式。OOP的装饰模式需要通过继承和组合来实现,而Python除了能支持OOP的decorator外,直接从语法层次支持decorator。Python的decorator可以用函数实现,也可以用类实现。
decorator可以增强函数的功能,定义起来虽然有点复杂,但使用起来非常灵活和方便。
当函数的参数个数太多,需要简化时,使用functools.partial可以创建一个新的函数,这个新函数可以固定住原函数的部分参数,从而在调用时更简单。
>>> import functools
>>> int2 = functools.partial(int, base=2)
>>> int2('1000000')
64
>>> int2('1010101')
85
简单总结functools.partial的作用就是,把一个函数的某些参数给固定住(也就是设置默认值),返回一个新的函数,调用这个新函数会更简单。
在Python中,一个.py文件就称之为一个模块(Module)。
最大的好处是大大提高了代码的可维护性。其次,编写代码不必从零开始。当一个模块编写完毕,就可以被其他地方引用。我们在编写程序的时候,也经常引用其他模块,包括Python内置的模块和来自第三方的模块。
模块是一组Python代码的集合,可以使用其他模块,也可以被其他模块使用。
创建自己的模块时,要注意:
模块常见写法:
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
' a test module '
__author__ = 'Michael Liao'
import sys
def test():
args = sys.argv
if len(args)==1:
print('Hello, world!')
elif len(args)==2:
print('Hello, %s!' % args[1])
else:
print('Too many arguments!')
if __name__=='__main__':
test()
第1行和第2行是标准注释,第1行注释可以让这个hello.py文件直接在Unix/Linux/Mac上运行,第2行注释表示.py文件本身使用标准UTF-8编码;
第4行是一个字符串,表示模块的文档注释,任何模块代码的第一个字符串都被视为模块的文档注释;
第6行使用__author__变量把作者写进去,这样当你公开源代码后别人就可以瞻仰你的大名;
当我们在命令行运行hello模块文件时,Python解释器把一个特殊变量__name__置为__main__,而如果在其他地方导入该hello模块时,if判断将失败,因此,这种if测试可以让一个模块通过命令行运行时执行一些额外的代码,最常见的就是运行测试。
作用域:
在一个模块中,我们可能会定义很多函数和变量,但有的函数和变量我们希望给别人使用,有的函数和变量我们希望仅仅在模块内部使用。在Python中,是通过_前缀来实现的。
正常的函数和变量名是公开的(public),可以被直接引用,比如:abc,x123,PI等;
类似__xxx__这样的变量是特殊变量,可以被直接引用,但是有特殊用途,比如上面的__author__,__name__就是特殊变量,hello模块定义的文档注释也可以用特殊变量__doc__访问,我们自己的变量一般不要用这种变量名;
类似_xxx和__xxx这样的函数或变量就是非公开的(private),不应该被直接引用,比如_abc,__abc等;
方法1:使用pip命令
在Python中,安装第三方模块,是通过包管理工具pip完成的。
注意:Mac或Linux上有可能并存Python 3.x和Python 2.x,因此对应的pip命令是pip3。
一般来说,第三方库都会在Python官方的pypi.python.org网站注册,要安装一个第三方库,必须先知道该库的名称,可以在官网或者pypi上搜索,比如Pillow的名称叫Pillow,因此,安装Pillow的命令就是:
pip install Pillow
方法2:使用Anaconda
我们推荐直接使用Anaconda,这是一个基于Python的数据处理和科学计算平台,它已经内置了许多非常有用的第三方库,我们装上Anaconda,就相当于把数十个第三方模块自动安装好了,非常简单易用。
安装好Anaconda后,重新打开命令行窗口,输入python,可以看到Anaconda的信息:
模块搜索路径:默认情况下,Python解释器会搜索当前目录、所有已安装的内置模块和第三方模块,搜索路径存放在sys模块的path变量中:
>>> import sys
>>> sys.path
['', '/Library/Frameworks/Python.framework/Versions/3.6/lib/python36.zip', '/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6', ..., '/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages']
如果我们要添加自己的搜索目录,有两种方法:
一是直接修改sys.path,添加要搜索的目录:
>>> import sys
>>> sys.path.append('/Users/michael/my_py_scripts')
这种方法是在运行时修改,运行结束后失效。
第二种方法是设置环境变量PYTHONPATH,该环境变量的内容会被自动添加到模块搜索路径中。设置方式与设置Path环境变量类似。注意只需要添加你自己的搜索路径,Python自己本身的搜索路径不受影响。
面向对象编程——Object Oriented Programming,简称OOP,是一种程序设计思想。OOP把对象作为程序的基本单元,一个对象包含了数据和操作数据的函数。
面向过程的程序设计把计算机程序视为一系列的命令集合,即一组函数的顺序执行。为了简化程序设计,面向过程把函数继续切分为子函数,即把大块函数通过切割成小块函数来降低系统的复杂度。
而面向对象的程序设计把计算机程序视为一组对象的集合,而每个对象都可以接收其他对象发过来的消息,并处理这些消息,计算机程序的执行就是一系列消息在各个对象之间传递。
class Student(object):
def __init__(self, name, score):
self.name = name
self.score = score
def print_score(self):
print('%s: %s' % (self.name, self.score))
bart = Student('Bart Simpson', 59)
lisa = Student('Lisa Simpson', 87)
bart.print_score()
lisa.print_score()
面向对象的设计思想是从自然界中来的,因为在自然界中,类(Class)和实例(Instance)的概念是很自然的。Class是一种抽象概念,比如我们定义的Class——Student,是指学生这个概念,而实例(Instance)则是一个个具体的Student,比如,Bart Simpson和Lisa Simpson是两个具体的Student。
所以,面向对象的设计思想是抽象出Class,根据Class创建Instance。
面向对象的抽象程度又比函数要高,因为一个Class既包含数据,又包含操作数据的方法。
类是创建实例的模板,而实例则是一个一个具体的对象,各个实例拥有的数据都互相独立,互不影响;
方法就是与实例绑定的函数,和普通函数不同,方法可以直接访问实例的数据;
通过在实例上调用方法,我们就直接操作了对象内部的数据,但无需知道方法内部的实现细节。
和静态语言不同,Python允许对实例变量绑定任何数据,也就是说,对于两个实例变量,虽然它们都是同一个类的不同实例
如果要让内部属性不被外部访问,可以把属性的名称前加上两个下划线__,在Python中,实例的变量名如果以__开头,就变成了一个私有变量(private),只有内部可以访问,外部不能访问。
class Student(object):
def __init__(self, name, score):
self.__name = name
self.__score = score
def print_score(self):
print('%s: %s' % (self.__name, self.__score))
需要注意的是,在Python中,变量名类似__xxx__的,也就是以双下划线开头,并且以双下划线结尾的,是特殊变量,特殊变量是可以直接访问的,不是private变量,所以,不能用__name__、__score__这样的变量名。
有些时候,你会看到以一个下划线开头的实例变量名,比如_name,这样的实例变量外部是可以访问的,但是,按照约定俗成的规定,当你看到这样的变量时,意思就是,“虽然我可以被访问,但是,请把我视为私有变量,不要随意访问”。
双下划线开头的实例变量是不是一定不能从外部访问呢?其实也不是。不能直接访问__name是因为Python解释器对外把__name变量改成了_Student__name,所以,仍然可以通过_Student__name来访问__name变量:
在OOP程序设计中,当我们定义一个class的时候,可以从某个现有的class继承,新的class称为子类(Subclass),而被继承的class称为基类、父类或超类(Base class、Super class)。
class Animal(object):
def run(self):
print('Animal is running...')
class Dog(Animal):
pass
class Cat(Animal):
pass
继承有什么好处?最大的好处是子类获得了父类的全部功能。由于Animial实现了run()方法,因此,Dog和Cat作为它的子类,什么事也没干,就自动拥有了run()方法:
dog = Dog()
dog.run()
cat = Cat()
cat.run()
当子类和父类都存在相同的run()方法时,我们说,子类的run()覆盖了父类的run(),在代码运行的时候,总是会调用子类的run()。这样,我们就获得了继承的另一个好处:多态。
对于一个变量,我们只需要知道它是Animal类型,无需确切地知道它的子类型,就可以放心地调用run()方法,而具体调用的run()方法是作用在Animal、Dog、Cat还是Tortoise对象上,由运行时该对象的确切类型决定,这就是多态真正的威力:调用方只管调用,不管细节,而当我们新增一种Animal的子类时,只要确保run()方法编写正确,不用管原来的代码是如何调用的。这就是著名的“开闭”原则:
静态语言 vs 动态语言
对于静态语言(例如Java)来说,如果需要传入Animal类型,则传入的对象必须是Animal类型或者它的子类,否则,将无法调用run()方法。
对于Python这样的动态语言来说,则不一定需要传入Animal类型。我们只需要保证传入的对象有一个run()方法就可以了
Python的“file-like object“就是一种鸭子类型。对真正的文件对象,它有一个read()方法,返回其内容。但是,许多对象,只要有read()方法,都被视为“file-like object“。许多函数接收的参数就是“file-like object“,你不一定要传入真正的文件对象,完全可以传入任何实现了read()方法的对象。
当我们拿到一个对象的引用时,如何知道这个对象是什么类型、有哪些方法呢?
获取对象类型
基本类型都可以用type()判断:
>>> type(123)
>>> type('str')
>>> type(None)
判断基本数据类型可以直接写int,str等,但如果要判断一个对象是否是函数怎么办?可以使用types模块中定义的常量:
>>> import types
>>> def fn():
... pass
...
>>> type(fn)==types.FunctionType
True
>>> type(abs)==types.BuiltinFunctionType
True
>>> type(lambda x: x)==types.LambdaType
True
>>> type((x for x in range(10)))==types.GeneratorType
True
对于class的继承关系来说,使用type()就很不方便。我们要判断class的类型,可以使用isinstance()函数。
总是优先使用isinstance()判断类型,可以将指定类型及其子类“一网打尽”。
如果要获得一个对象的所有属性和方法,可以使用dir()函数,它返回一个包含字符串的list,比如,获得一个str对象的所有属性和方法:
>>> dir('ABC')
['__add__', '__class__',..., '__subclasshook__', 'capitalize', 'casefold',..., 'zfill']
类似__xxx__的属性和方法在Python中都是有特殊用途的,比如__len__方法返回长度。在Python中,如果你调用len()函数试图获取一个对象的长度,实际上,在len()函数内部,它自动去调用该对象的__len__()方法,所以,下面的代码是等价的:
>>> len('ABC')
3
>>> 'ABC'.__len__()
3
仅仅把属性和方法列出来是不够的,配合getattr()、setattr()以及hasattr(),我们可以直接操作一个对象的状态:
>>> class MyObject(object):
... def __init__(self):
... self.x = 9
... def power(self):
... return self.x * self.x
...
>>> obj = MyObject()
>>> hasattr(obj, 'x') # 有属性'x'吗?
True
>>> obj.x
9
>>> hasattr(obj, 'y') # 有属性'y'吗?
False
>>> setattr(obj, 'y', 19) # 设置一个属性'y'
>>> hasattr(obj, 'y') # 有属性'y'吗?
True
>>> getattr(obj, 'y') # 获取属性'y'
19
>>> obj.y # 获取属性'y'
19
由于Python是动态语言,根据类创建的实例可以任意绑定属性。
给实例绑定属性的方法是通过实例变量,或者通过self变量,但是,如果Student类本身需要绑定一个属性呢?可以直接在class中定义属性,这种属性是类属性,归Student类所有:
class Student(object):
name = 'Student'
在编写程序的时候,千万不要对实例属性和类属性使用相同的名字,因为相同名称的实例属性将屏蔽掉类属性,但是当你删除实例属性后,再使用相同的名称,访问到的将是类属性。
为了统计学生人数,可以给Student类增加一个类属性,每创建一个实例,该属性自动增加:
class Student(object):
count = 0
def __init__(self, name):
self.name = name
Student.count = Student.count + 1
__slots__变量
正常情况下,当我们定义了一个class,创建了一个class的实例后,我们可以给该实例绑定任何属性和方法,这就是动态语言的灵活性。
class Student(object):
pass
>>> def set_age(self, age): # 定义一个函数作为实例方法
... self.age = age
...
>>> from types import MethodType
>>> s.set_age = MethodType(set_age, s) # 给实例绑定一个方法
>>> s.set_age(25) # 调用实例方法
>>> s.age # 测试结果
25
为了给所有实例都绑定方法,可以给class绑定方法:
>>> def set_score(self, score):
... self.score = score
...
>>> Student.set_score = set_score
为了达到限制的目的,Python允许在定义class的时候,定义一个特殊的__slots__变量,来限制该class实例能添加的属性:
class Student(object):
__slots__ = ('name', 'age') # 用tuple定义允许绑定的属性名称
>>> s = Student() # 创建新的实例
>>> s.name = 'Michael' # 绑定属性'name'
>>> s.age = 25 # 绑定属性'age'
>>> s.score = 99 # 绑定属性'score'
Traceback (most recent call last):
File "", line 1, in
AttributeError: 'Student' object has no attribute 'score'
使用__slots__要注意,__slots__定义的属性仅对当前类实例起作用,对继承的子类是不起作用
@property
对于类的方法,装饰器一样起作用。Python内置的@property装饰器就是负责把一个方法变成属性调用的:
class Student(object):
@property
def score(self):
return self._score
@score.setter
def score(self, value):
if not isinstance(value, int):
raise ValueError('score must be an integer!')
if value < 0 or value > 100:
raise ValueError('score must between 0 ~ 100!')
self._score = value
@property广泛应用在类的定义中,可以让调用者写出简短的代码,同时保证对参数进行必要的检查,这样,程序运行时就减少了出错的可能性。
多重继承
由于Python允许使用多重继承,因此,MixIn就是一种常见的设计。
只允许单一继承的语言(如Java)不能使用MixIn的设计。
在设计类的继承关系时,通常,主线都是单一继承下来的,例如,Ostrich继承自Bird。但是,如果需要“混入”额外的功能,通过多重继承就可以实现,比如,让Ostrich除了继承自Bird外,再同时继承Runnable。这种设计通常称之为MixIn。
为了更好地看出继承关系,我们把Runnable和Flyable改为RunnableMixIn和FlyableMixIn。类似的,你还可以定义出肉食动物CarnivorousMixIn和植食动物HerbivoresMixIn,让某个动物同时拥有好几个MixIn:
class Dog(Mammal, RunnableMixIn, CarnivorousMixIn):
pass
MixIn的目的就是给一个类增加多个功能,这样,在设计类的时候,我们优先考虑通过多重继承来组合多个MixIn的功能,而不是设计多层次的复杂的继承关系。
定制类
方法__str__()
用于打印类对象本身
两者的区别是__str__()返回用户看到的字符串,而__repr__()返回程序开发者看到的字符串,也就是说,repr()是为调试服务的。
方法__iter__()
如果一个类想被用于for … in循环,类似list或tuple那样,就必须实现一个__iter__()方法,该方法返回一个迭代对象,然后,Python的for循环就会不断调用该迭代对象的__next__()方法拿到循环的下一个值,直到遇到StopIteration错误时退出循环。
# 类当中__iter__方法的使用实例
class Fib(object):
def __init__(self):
self.a , self.b = 0, 1
def __iter__(self):
return self
def __next__(self):
self.a, self.b = self.b, self.a + self.b
if self.a > 1000:
raise StopIteration()
return self.a
def __getitem__(self, n):
if isinstance(n, int): # n是索引
a, b = 1, 1
for x in range(n):
a, b = b, a + b
return a
if isinstance(n, slice): # n是切片
start = n.start
stop = n.stop
if start is None:
start = 0
a, b = 1, 1
L = []
for x in range(stop):
if x >= start:
L.append(a)
a, b = b, a + b
return L
f = Fib()
print(f[0])
print(f[:9])
属性__getattr__()
Python还有另一个机制,那就是写一个__getattr__()方法,动态返回一个属性。修改如下:
class Student(object):
def __init__(self):
self.name = 'Michael'
def __getattr__(self, attr):
if attr=='score':
return 99
当调用不存在的属性时,比如score,Python解释器会试图调用__getattr__(self, ‘score’)来尝试获得属性,这样,我们就有机会返回score的值
属性__call__()
当要调用对象本身时,只需要定义一个__call__()方法,就可以直接对实例进行调用。
class Student(object):
def __init__(self, name):
self.name = name
def __call__(self):
print('My name is %s.' % self.name)
>>> s = Student('Michael')
>>> s() # self参数不要传入
My name is Michael.
通过callable()方法可判断一个变量是否可被调用。
>>> callable(Student())
True
>>> callable(max)
True
>>> callable([1, 2, 3])
False
>>> callable(None)
False
>>> callable('str')
False
枚举类
更好的方法是为这样的枚举类型定义一个class类型,然后,每个常量都是class的一个唯一实例。Python提供了Enum类来实现这个功能:
from enum import Enum
Month = Enum('Month', ('Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'))
for name, member in Month.__members__.items():
print(name, '=>', member, ',', member.value)
元类
动态语言和静态语言最大的不同,就是函数和类的定义,不是编译时定义的,而是运行时动态创建的。
当Python解释器载入hello模块时,就会依次执行该模块的所有语句,执行结果就是动态创建出一个Hello的class对象
我们说class的定义是运行时动态创建的,而创建class的方法就是使用type()函数。
type()函数既可以返回一个对象的类型,又可以创建出新的类型:
>>> def fn(self, name='world'): # 先定义函数
... print('Hello, %s.' % name)
...
>>> Hello = type('Hello', (object,), dict(hello=fn)) # 创建Hello class
>>> h = Hello()
>>> h.hello()
Hello, world.
>>> print(type(Hello))
>>> print(type(h))
要创建一个class对象,type()函数依次传入3个参数:
class的名称;
继承的父类集合,注意Python支持多重继承,如果只有一个父类,别忘了tuple的单元素写法;
class的方法名称与函数绑定,这里我们把函数fn绑定到方法名hello上。
动态语言本身支持运行期动态创建类,这和静态语言有非常大的不同,要在静态语言运行期创建类,必须构造源代码字符串再调用编译器,或者借助一些工具生成字节码实现,本质上都是动态编译,会非常复杂。
metaclass,直译为元类,简单的解释就是:
当我们定义了类以后,就可以根据这个类创建出实例,所以:先定义类,然后创建实例。
连接起来就是:先定义metaclass,就可以创建类,最后创建实例。
所以,metaclass允许你创建类或者修改类。换句话说,你可以把类看成是metaclass创建出来的“实例”。
Python内置了一套异常处理机制,来帮助我们进行错误处理。
此外,我们也需要跟踪程序的执行,查看变量的值是否正确,这个过程称为调试。Python的pdb可以让我们以单步方式执行代码。
Python内置了一套try…except…finally…的错误处理机制
try:
print('try...')
r = 10 / int('2')
print('result:', r)
except ValueError as e:
print('ValueError:', e)
except ZeroDivisionError as e:
print('ZeroDivisionError:', e)
else:
print('no error!')
finally:
print('finally...')
print('END')
如果没有错误发生,可以在except语句块后面加一个else,当没有错误发生时,会自动执行else语句
Python所有的错误都是从BaseException类派生的,常见的错误类型和继承关系看这里:
https://docs.python.org/3/library/exceptions.html#exception-hierarchy
Python内置的logging模块可以非常容易地记录错误信息:
# err_logging.py
import logging
def foo(s):
return 10 / int(s)
def bar(s):
return foo(s) * 2
def main():
try:
bar('0')
except Exception as e:
logging.exception(e)
main()
print('END')
通过配置,logging还可以把错误记录到日志文件里,方便事后排查。
自定义异常
因为错误是class,捕获一个错误就是捕获到该class的一个实例。因此,错误并不是凭空产生的,而是有意创建并抛出的。Python的内置函数会抛出很多类型的错误,我们自己编写的函数也可以抛出错误。
# err_raise.py
class FooError(ValueError):
pass
def foo(s):
n = int(s)
if n==0:
raise FooError('invalid value: %s' % s)
return 10 / n
foo('0')
1、使用print()打印调试信息,分析错误
2、使用断言
凡是用print()来辅助查看的地方,都可以用断言(assert)来替代:
def foo(s):
n = int(s)
assert n != 0, 'n is zero!'
return 10 / n
def main():
foo('0')
程序中如果到处充斥着assert,和print()相比也好不到哪去。不过,启动Python解释器时可以用-O参数来关闭assert:
$ python -O err.py
Traceback (most recent call last):
...
ZeroDivisionError: division by zero
关闭后,你可以把所有的assert语句当成pass来看。
3、使用logging
把print()替换为logging是第3种方式,和assert比,logging不会抛出错误,而且可以输出到文件:
import logging
logging.basicConfig(level=logging.INFO)
s = '0'
n = int(s)
logging.info('n = %d' % n)
print(10 / n)
这就是logging的好处,它允许你指定记录信息的级别,有debug,info,warning,error等几个级别。
logging的另一个好处是通过简单的配置,一条语句可以同时输出到不同的地方,比如console和文件。
4、使用pdb
启动Python的调试器pdb,让程序以单步方式运行,可以随时查看运行状态。我们先准备好程序:
# err.py
s = '0'
n = int(s)
print(10 / n)
然后启动:
$ python -m pdb err.py
> /Users/michael/Github/learn-python3/samples/debug/err.py(2)()
-> s = '0'
输入命令n可以单步执行代码
任何时候都可以输入命令p 变量名来查看变量
输入命令q结束调试,退出程序
我们只需要import pdb,然后,在可能出错的地方放一个pdb.set_trace(),就可以设置一个断点:
# err.py
import pdb
s = '0'
n = int(s)
pdb.set_trace() # 运行到这里会自动暂停
print(10 / n)
运行代码,程序会自动在pdb.set_trace()暂停并进入pdb调试环境,可以用命令p查看变量,或者用命令c继续运行
5、使用IDE调试工具
以visual studio code 单步调试为例:
设置断点
点击F5开始调试
使用调试快捷键:
如果你听说过“测试驱动开发”(TDD:Test-Driven Development),单元测试就不陌生。
单元测试是用来对一个模块、一个函数或者一个类来进行正确性检验的测试工作。
比如对函数abs(),我们可以编写出以下几个测试用例:
输入正数,比如1、1.2、0.99,期待返回值与输入相同;
输入负数,比如-1、-1.2、-0.99,期待返回值与输入相反;
输入0,期待返回0;
输入非数值类型,比如None、[]、{},期待抛出TypeError。
把上面的测试用例放到一个测试模块里,就是一个完整的单元测试。
这种以测试为驱动的开发模式最大的好处就是确保一个程序模块的行为符合我们设计的测试用例。在将来修改的时候,可以极大程度地保证该模块行为仍然是正确的。
以下是一个单元测试的简单例子:
class Student(object):
def __init__(self, name, score):
self.name = name
self.score = score
def get_grade(self):
if self.score > 100 or self.score < 0:
raise ValueError('score must between 0 and 100')
if self.score >= 80:
return 'A'
if self.score >= 60:
return 'B'
return 'C'
测试类
class TestStudent(unittest.TestCase):
def test_80_to_100(self):
s1 = Student('Bart', 80)
s2 = Student('Lisa', 100)
self.assertEqual(s1.get_grade(), 'A')
self.assertEqual(s2.get_grade(), 'A')
def test_60_to_80(self):
s1 = Student('Bart', 60)
s2 = Student('Lisa', 79)
self.assertEqual(s1.get_grade(), 'B')
self.assertEqual(s2.get_grade(), 'B')
def test_0_to_60(self):
s1 = Student('Bart', 0)
s2 = Student('Lisa', 59)
self.assertEqual(s1.get_grade(), 'C')
self.assertEqual(s2.get_grade(), 'C')
def test_invalid(self):
s1 = Student('Bart', -1)
s2 = Student('Lisa', 101)
with self.assertRaises(ValueError):
s1.get_grade()
with self.assertRaises(ValueError):
s2.get_grade()
if __name__ == '__main__':
unittest.main()
单元测试可以有效地测试某个程序模块的行为,是未来重构代码的信心保证。
单元测试的测试用例要覆盖常用的输入组合、边界条件和异常。
文档测试
Python内置的“文档测试”(doctest)模块可以直接提取注释中的代码并执行测试。
doctest严格按照Python交互式命令行的输入和输出来判断测试结果是否正确。只有测试异常的时候,可以用…表示中间一大段烦人的输出。
def abs(n):
'''
Function to get absolute value of number.
Example:
>>> abs(1)
1
>>> abs(-1)
1
>>> abs(0)
0
'''
return n if n >= 0 else (-n)
if __name__ == '__main__':
import doctest
doctest.testmod()
doctest非常有用,不但可以用来测试,还可以直接作为示例代码。通过某些文档生成工具,就可以自动把包含doctest的注释提取出来。用户看文档的时候,同时也看到了doctest。
IO在计算机中指Input/Output,也就是输入和输出。由于程序和运行时数据是在内存中驻留,由CPU这个超快的计算核心来执行,涉及到数据交换的地方,通常是磁盘、网络等,就需要IO接口。
IO编程中,Stream(流)是一个很重要的概念,可以把流想象成一个水管,数据就是水管里的水,但是只能单向流动。Input Stream就是数据从外面(磁盘、网络)流进内存,Output Stream就是数据从内存流到外面去。对于浏览网页来说,浏览器和新浪服务器之间至少需要建立两根水管,才可以既能发数据,又能收数据。
IO编程包括同步IO和异步IO两种类型,同步和异步的区别就在于是否等待IO执行的结果。
读写文件是最常见的IO操作。
读写文件前,我们先必须了解一下,在磁盘上读写文件的功能都是由操作系统提供的,现代操作系统不允许普通的程序直接操作磁盘,所以,读写文件就是请求操作系统打开一个文件对象(通常称为文件描述符),然后,通过操作系统提供的接口从这个文件对象中读取数据(读文件),或者把数据写入这个文件对象(写文件)。
读文件
由于文件读写时都有可能产生IOError,一旦出错,后面的f.close()就不会调用。所以,为了保证无论是否出错都能正确地关闭文件,我们可以使用try … finally来实现:
try:
f = open('/path/to/file', 'r')
print(f.read())
finally:
if f:
f.close()
但是每次都这么写实在太繁琐,所以,Python引入了with语句来自动帮我们调用close()方法:
with open('/path/to/file', 'r') as f:
print(f.read())
调用read()会一次性读取文件的全部内容,如果文件有10G,内存就爆了,所以,要保险起见,可以反复调用read(size)方法,每次最多读取size个字节的内容。另外,调用readline()可以每次读取一行内容,调用readlines()一次读取所有内容并按行返回list。因此,要根据需要决定怎么调用。
如果文件很小,read()一次性读取最方便;如果不能确定文件大小,反复调用read(size)比较保险;如果是配置文件,调用readlines()最方便:
非UTF-8编码文件
前面讲的默认都是读取文本文件,并且是UTF-8编码的文本文件。
要读取非UTF-8编码的文本文件,需要给open()函数传入encoding参数,例如,读取GBK编码的文件:
>>> f = open('/Users/michael/gbk.txt', 'r', encoding='gbk')
>>> f.read()
'测试'
字符编码转换可用iconv命令:
[功能]
对于给定文件把它的内容从一种编码转换成另一种编码。
[描述]
-f encoding :把字符从encoding编码开始转换。
-t encoding :把字符转换到encoding编码。
-l :列出已知的编码字符集合
-o file :指定输出文件
-c :忽略输出的非法字符
-s :禁止警告信息,但不是错误信息
--verbose :显示进度信息
-f和-t所能指定的合法字符在-l选项的命令里面都列出来了。
# 举例:将test.txt从UTF-8转换成gbk编码,并将结果输出到test1.txt
iconv -f UTF-8 -t gbk test.txt > test1.txt
写文件
写文件和读文件是一样的,唯一区别是调用open()函数时,传入标识符’w’或者’wb’表示写文本文件或写二进制文件:
>>> f = open('/Users/michael/test.txt', 'w')
>>> f.write('Hello, world!')
>>> f.close()
你可以反复调用write()来写入文件,但是务必要调用f.close()来关闭文件。当我们写文件时,操作系统往往不会立刻把数据写入磁盘,而是放到内存缓存起来,空闲的时候再慢慢写入。只有调用close()方法时,操作系统才保证把没有写入的数据全部写入磁盘。忘记调用close()的后果是数据可能只写了一部分到磁盘,剩下的丢失了。所以,还是用with语句来得保险:
with open('/Users/michael/test.txt', 'w') as f:
f.write('Hello, world!')
很多时候,数据读写不一定是文件,也可以在内存中读写。
StringIO顾名思义就是在内存中读写str。
>>> from io import StringIO
>>> f = StringIO()
>>> f.write('hello')
5
>>> f.write(' ')
1
>>> f.write('world!')
6
>>> print(f.getvalue())
hello world!
StringIO操作的只能是str,如果要操作二进制数据,就需要使用BytesIO。
>>> from io import BytesIO
>>> f = BytesIO()
>>> f.write('中文'.encode('utf-8'))
6
>>> print(f.getvalue())
b'\xe4\xb8\xad\xe6\x96\x87'
和StringIO类似,可以用一个bytes初始化BytesIO,然后,像读文件一样读取:
>>> from io import BytesIO
>>> f = BytesIO(b'\xe4\xb8\xad\xe6\x96\x87')
>>> f.read()
b'\xe4\xb8\xad\xe6\x96\x87'
Python内置的os模块也可以直接调用操作系统提供的接口函数,可以实现文件、目录的操作。
>>> import os
>>> os.name # 操作系统类型
'posix' # 如果是posix,说明系统是Linux、Unix或Mac OS X,如果是nt,就是Windows系统。
# 查看当前目录的绝对路径:
>>> os.path.abspath('.')
'/Users/michael'
# 在某个目录下创建一个新目录,首先把新目录的完整路径表示出来:
>>> os.path.join('/Users/michael', 'testdir')
'/Users/michael/testdir'
# 然后创建一个目录:
>>> os.mkdir('/Users/michael/testdir')
# 删掉一个目录:
>>> os.rmdir('/Users/michael/testdir')
# 拆分路径
>>> os.path.split('/Users/michael/testdir/file.txt')
('/Users/michael/testdir', 'file.txt')
# 获取文件后缀
>>> os.path.splitext('/path/to/file.txt')
('/path/to/file', '.txt')
# 对文件重命名:
>>> os.rename('test.txt', 'test.py')
# 删掉文件:
>>> os.remove('test.py')
复制文件的函数居然在os模块中不存在!原因是复制文件并非由操作系统提供的系统调用。理论上讲,我们通过上一节的读写文件可以完成文件复制,只不过要多写很多代码。
幸运的是shutil模块提供了copyfile()的函数,你还可以在shutil模块中找到很多实用函数,它们可以看做是os模块的补充。
最后看看如何利用Python的特性来过滤文件。比如我们要列出所有的.py文件,只需要一行代码:
>>> [x for x in os.listdir('.') if os.path.isfile(x) and os.path.splitext(x)[1]=='.py']
['apis.py', 'config.py', 'models.py', 'pymonitor.py', 'test_db.py', 'urls.py', 'wsgiapp.py']
pickle
我们把变量从内存中变成可存储或传输的过程称之为序列化,在Python中叫pickling,在其他语言中也被称之为serialization,marshalling,flattening等等,都是一个意思。
序列化之后,就可以把序列化后的内容写入磁盘,或者通过网络传输到别的机器上。
反过来,把变量内容从序列化的对象重新读到内存里称之为反序列化,即unpickling。
Python提供了pickle模块来实现序列化。
>>> import pickle
>>> d = dict(name='Bob', age=20, score=88)
>>> pickle.dumps(d)
b'\x80\x03}q\x00(X\x03\x00\x00\x00ageq\x01K\x14X\x05\x00\x00\x00scoreq\x02KXX\x04\x00\x00\x00nameq\x03X\x03\x00\x00\x00Bobq\x04u.'
# 序列化到文件中
>>> f = open('dump.txt', 'wb')
>>> pickle.dump(d, f)
>>> f.close()
用pickle.loads()方法反序列化出对象,也可以直接用pickle.load()方法从一个file-like Object中直接反序列化出对象。
>>> f = open('dump.txt', 'rb')
>>> d = pickle.load(f)
>>> f.close()
>>> d
{'age': 20, 'score': 88, 'name': 'Bob'}
Pickle的问题和所有其他编程语言特有的序列化问题一样,就是它只能用于Python,并且可能不同版本的Python彼此都不兼容
json
如果我们要在不同的编程语言之间传递对象,就必须把对象序列化为标准格式,比如XML,但更好的方法是序列化为JSON,因为JSON表示出来就是一个字符串,可以被所有语言读取,也可以方便地存储到磁盘或者通过网络传输。JSON不仅是标准格式,并且比XML更快,而且可以直接在Web页面中读取,非常方便。
Python内置的json模块提供了非常完善的Python对象到JSON格式的转换。
>>> import json
>>> d = dict(name='Bob', age=20, score=88)
>>> json.dumps(d)
'{"age": 20, "score": 88, "name": "Bob"}'
>>> json_str = '{"age": 20, "score": 88, "name": "Bob"}'
>>> json.loads(json_str)
{'age': 20, 'score': 88, 'name': 'Bob'}
对象的序列化
可选参数default就是把任意一个对象变成一个可序列为JSON的对象,我们只需要为Student专门写一个转换函数,再把函数传进去即可:
import json
class Student(object):
def __init__(self, name, age, score):
self.name = name
self.age = age
self.score = score
def student2dict(std):
return {
'name': std.name,
'age': std.age,
'score': std.score
}
s = Student('Bob', 20, 88)
print(json.dumps(s, default=Student.student2dict))
线程是最小的执行单元,而进程由至少一个线程组成。如何调度进程和线程,完全由操作系统决定,程序自己不能决定什么时候执行,执行多长时间。
Python既支持多进程,又支持多线程。
多进程
在Unix/Linux下,可以使用fork()调用实现多进程。
要实现跨平台的多进程,可以使用multiprocessing模块。
进程间通信是通过Queue、Pipes等实现的
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'用于测试subprocess进程间通信的功能'
from multiprocessing import Process, Queue
import os, time, random
# 写数据
def write(q):
print('Process to write: %s' % os.getpid())
for value in ['A', 'B', 'C']:
print('Put %s to queue...' % value)
q.put(value)
time.sleep(random.random())
# 读数据
def read(q):
print('Process to read: %s' % os.getpid())
while True:
value = q.get()
print('Get %s from queue...' % value)
if __name__ == '__main__':
print('Main Progress %s start ...' % os.getpid())
q = Queue()
pw = Process(target=write, args=(q,))
pr = Process(target=read, args=(q,))
# 启动子线程,写入
pw.start()
# 启动子线程,读取
pr.start()
pw.join()
pr.terminate()
print('Main Process exit ...')
测试结果为:
Main Progress 46632 start ...
Process to write: 46633
Put A to queue...
Process to read: 46634
Get A from queue...
Put B to queue...
Get B from queue...
Put C to queue...
Get C from queue...
Main Process exit ...
多线程
多线程和多进程最大的不同在于,多进程中,同一个变量,各自有一份拷贝存在于每个进程中,互不影响,而多线程中,所有变量都由所有线程共享,所以,任何一个变量都可以被任何一个线程修改,因此,线程之间共享数据最大的危险在于多个线程同时改一个变量,把内容给改乱了。
我们定义了一个共享变量balance,初始值为0,并且启动两个线程,先存后取,理论上结果应该为0,但是,由于线程的调度是由操作系统决定的,当t1、t2交替执行时,只要循环次数足够多,balance的结果就不一定是0了。
如果我们要确保balance计算正确,就要给change_it()上一把锁,当某个线程开始执行change_it()时,我们说,该线程因为获得了锁,因此其他线程不能同时执行change_it(),只能等待,直到锁被释放后,获得该锁以后才能改。由于锁只有一个,无论多少线程,同一时刻最多只有一个线程持有该锁,所以,不会造成修改的冲突。创建一个锁就是通过threading.Lock()来实现:
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'用于测试线程通信的功能'
import time, threading, random
# 余额
balance = 0
lock = threading.Lock()
# 存取
def change_it(n):
global balance
balance = balance + n
# time.sleep(random.random() * 3)
balance = balance - n
def run_thread(n):
for i in range(2000000):
lock.acquire()
try:
change_it(n)
finally:
lock.release()
print('Thread (%s) start ...' % threading.current_thread().name)
t1 = threading.Thread(target=run_thread, args=(5,))
t2 = threading.Thread(target=run_thread, args=(8,))
t1.start()
t2.start()
t1.join()
t2.join()
print('Balance = %s' % balance)
print('Thread (%s) end ...' % threading.current_thread().name)
锁的好处就是确保了某段关键代码只能由一个线程从头到尾完整地执行,坏处当然也很多,首先是阻止了多线程并发执行,包含锁的某段代码实际上只能以单线程模式执行,效率就大大地下降了。其次,由于可以存在多个锁,不同的线程持有不同的锁,并试图获取对方持有的锁时,可能会造成死锁,导致多个线程全部挂起,既不能执行,也无法结束,只能靠操作系统强制终止。
因为Python的线程虽然是真正的线程,但解释器执行代码时,有一个GIL锁:Global Interpreter Lock,任何Python线程执行前,必须先获得GIL锁,然后,每执行100条字节码,解释器就自动释放GIL锁,让别的线程有机会执行。这个GIL全局锁实际上把所有线程的执行代码都给上了锁,所以,多线程在Python中只能交替执行,即使100个线程跑在100核CPU上,也只能用到1个核。
ThreadLocal
在多线程环境下,每个线程都有自己的数据。一个线程使用自己的局部变量比使用全局变量好,因为局部变量只有线程自己能看见,不会影响其他线程,而全局变量的修改必须加锁。
一个ThreadLocal变量虽然是全局变量,但每个线程都只能读写自己线程的独立副本,互不干扰。ThreadLocal解决了参数在一个线程中各个函数之间互相传递的问题。
# 全局的threadlocal对象
localSchool = threading.local()
def process_student():
std = localSchool.student
print('hello %s (in %s)' % (std, threading.current_thread().name))
def process_thread(name):
localSchool.student = name
process_student()
print('Thread (%s) start ...' % threading.current_thread().name)
t1 = threading.Thread(target=process_thread, args=('haha',), name='Thread-A')
t2 = threading.Thread(target=process_thread, args=('gaga',), name='Thread-B')
t1.start()
t2.start()
t1.join()
t2.join()
print('Thread (%s) end ...' % threading.current_thread().name)
多线程VS多进程
多进程模式最大的优点就是稳定性高,因为一个子进程崩溃了,不会影响主进程和其他子进程。(当然主进程挂了所有进程就全挂了,但是Master进程只负责分配任务,挂掉的概率低)著名的Apache最早就是采用多进程模式。
多进程模式的缺点是创建进程的代价大,在Unix/Linux系统下,用fork调用还行,在Windows下创建进程开销巨大。另外,操作系统能同时运行的进程数也是有限的,在内存和CPU的限制下,如果有几千个进程同时运行,操作系统连调度都会成问题。
多线程模式通常比多进程快一点,但是也快不到哪去,而且,多线程模式致命的缺点就是任何一个线程挂掉都可能直接造成整个进程崩溃,因为所有线程共享进程的内存。在Windows上,如果一个线程执行的代码出了问题,你经常可以看到这样的提示:“该程序执行了非法操作,即将关闭”,其实往往是某个线程出了问题,但是操作系统会强制结束整个进程。
所以,多任务一旦多到一个限度,就会消耗掉系统所有的资源,结果效率急剧下降,所有任务都做不好。
计算密集型任务的特点是要进行大量的计算,消耗CPU资源,比如计算圆周率、对视频进行高清解码等等,全靠CPU的运算能力。这种计算密集型任务虽然也可以用多任务完成,但是任务越多,花在任务切换的时间就越多,CPU执行任务的效率就越低,所以,要最高效地利用CPU,计算密集型任务同时进行的数量应当等于CPU的核心数。
IO密集型任务执行期间,99%的时间都花在IO上,花在CPU上的时间很少,因此,用运行速度极快的C语言替换用Python这样运行速度极低的脚本语言,完全无法提升运行效率。对于IO密集型任务,最合适的语言就是开发效率最高(代码量最少)的语言,脚本语言是首选,C语言最差。
datetime是Python处理日期和时间的标准库。
获取日期时间
>>> from datetime import datetime
>>> now = datetime.now() # 获取当前datetime
>>> print(now)
2015-05-18 16:28:07.198690
>>> print(type(now))
>>> from datetime import datetime
>>> dt = datetime(2015, 4, 19, 12, 20) # 用指定日期时间创建datetime
>>> print(dt)
2015-04-19 12:20:00
注意到datetime是模块,datetime模块还包含一个datetime类,通过from datetime import datetime导入的才是datetime这个类。
如果仅导入import datetime,则必须引用全名datetime.datetime。
datetime.now()返回当前日期和时间,其类型是datetime。
转换成时间戳
在计算机中,时间实际上是用数字表示的。我们把1970年1月1日 00:00:00 UTC+00:00时区的时刻称为epoch time,记为0(1970年以前的时间timestamp为负数),当前时间就是相对于epoch time的秒数,称为timestamp。
可见timestamp的值与时区毫无关系,因为timestamp一旦确定,其UTC时间就确定了,转换到任意时区的时间也是完全确定的,这就是为什么计算机存储的当前时间是以timestamp表示的,因为全球各地的计算机在任意时刻的timestamp都是完全相同的(假定时间已校准)。
datetime转成时间戳
>>> from datetime import datetime
>>> dt = datetime(2015, 4, 19, 12, 20) # 用指定日期时间创建datetime
>>> dt.timestamp() # 把datetime转换为timestamp
1429417200.0
时间戳转成datetime
>>> from datetime import datetime
>>> t = 1429417200.0
>>> print(datetime.fromtimestamp(t))
2015-04-19 12:20:00
注意到timestamp是一个浮点数,它没有时区的概念,而datetime是有时区的。上述转换是在timestamp和本地时间做转换。本地时间是指当前操作系统设定的时区。
timestamp也可以直接被转换到UTC标准时区的时间:
>>> from datetime import datetime
>>> t = 1429417200.0
>>> print(datetime.fromtimestamp(t)) # 本地时间
2015-04-19 12:20:00
>>> print(datetime.utcfromtimestamp(t)) # UTC时间
2015-04-19 04:20:00
日期格式化
很多时候,用户输入的日期和时间是字符串,要处理日期和时间,首先必须把str转换为datetime。转换方法是通过datetime.strptime()实现,需要一个日期和时间的格式化字符串:
>>> from datetime import datetime
>>> cday = datetime.strptime('2015-6-1 18:19:59', '%Y-%m-%d %H:%M:%S')
>>> print(cday)
2015-06-01 18:19:59
如果已经有了datetime对象,要把它格式化为字符串显示给用户,就需要转换为str,转换方法是通过strftime()实现的,同样需要一个日期和时间的格式化字符串:
>>> from datetime import datetime
>>> now = datetime.now()
>>> print(now.strftime('%a, %b %d %H:%M'))
Mon, May 05 16:28
详细的说明请参考Python文档
时间计算
对日期和时间进行加减实际上就是把datetime往后或往前计算,得到新的datetime。加减可以直接用+和-运算符,不过需要导入timedelta这个类:
>>> from datetime import datetime, timedelta
>>> now = datetime.now()
>>> now
datetime.datetime(2015, 5, 18, 16, 57, 3, 540997)
>>> now + timedelta(hours=10)
datetime.datetime(2015, 5, 19, 2, 57, 3, 540997)
>>> now - timedelta(days=1)
datetime.datetime(2015, 5, 17, 16, 57, 3, 540997)
>>> now + timedelta(days=2, hours=12)
datetime.datetime(2015, 5, 21, 4, 57, 3, 540997)
时区转换
一个datetime类型有一个时区属性tzinfo,但是默认为None,所以无法区分这个datetime到底是哪个时区,除非强行给datetime设置一个时区:
>>> from datetime import datetime, timedelta, timezone
>>> tz_utc_8 = timezone(timedelta(hours=8)) # 创建时区UTC+8:00
>>> now = datetime.now()
>>> now
datetime.datetime(2015, 5, 18, 17, 2, 10, 871012)
>>> dt = now.replace(tzinfo=tz_utc_8) # 强制设置为UTC+8:00
>>> dt
datetime.datetime(2015, 5, 18, 17, 2, 10, 871012, tzinfo=datetime.timezone(datetime.timedelta(0, 28800)))
我们可以先通过utcnow()拿到当前的UTC时间,再转换为任意时区的时间:
# 拿到UTC时间,并强制设置时区为UTC+0:00:
>>> utc_dt = datetime.utcnow().replace(tzinfo=timezone.utc)
>>> print(utc_dt)
2015-05-18 09:05:12.377316+00:00
# astimezone()将转换时区为北京时间:
>>> bj_dt = utc_dt.astimezone(timezone(timedelta(hours=8)))
>>> print(bj_dt)
2015-05-18 17:05:12.377316+08:00
# astimezone()将转换时区为东京时间:
>>> tokyo_dt = utc_dt.astimezone(timezone(timedelta(hours=9)))
>>> print(tokyo_dt)
2015-05-18 18:05:12.377316+09:00
# astimezone()将bj_dt转换时区为东京时间:
>>> tokyo_dt2 = bj_dt.astimezone(timezone(timedelta(hours=9)))
>>> print(tokyo_dt2)
2015-05-18 18:05:12.377316+09:00
时区转换的关键在于,拿到一个datetime时,要获知其正确的时区,然后强制设置时区,作为基准时间。
利用带时区的datetime,通过astimezone()方法,可以转换到任意时区。
注:不是必须从UTC+0:00时区转换到其他时区,任何带时区的datetime都可以正确转换,例如上述bj_dt到tokyo_dt的转换。
collections是Python内建的一个集合模块,提供了许多有用的集合类。
namedtuple
namedtuple是一个函数,它用来创建一个自定义的tuple对象,并且规定了tuple元素的个数,并可以用属性而不是索引来引用tuple的某个元素。
这样一来,我们用namedtuple可以很方便地定义一种数据类型,它具备tuple的不变性,又可以根据属性来引用,使用十分方便。
>>> from collections import namedtuple
>>> Point = namedtuple('Point', ['x', 'y'])
>>> p = Point(1, 2)
>>> p.x
1
>>> p.y
2
deque
deque是为了高效实现插入和删除操作的双向列表,适合用于队列和栈:
deque除了实现list的append()和pop()外,还支持appendleft()和popleft(),这样就可以非常高效地往头部添加或删除元素。
>>> from collections import deque
>>> q = deque(['a', 'b', 'c'])
>>> q.append('x')
>>> q.appendleft('y')
>>> q
deque(['y', 'a', 'b', 'c', 'x'])
defaultdict
使用dict时,如果引用的Key不存在,就会抛出KeyError。如果希望key不存在时,返回一个默认值,就可以用defaultdict:
>>> from collections import defaultdict
>>> dd = defaultdict(lambda: 'N/A')
>>> dd['key1'] = 'abc'
>>> dd['key1'] # key1存在
'abc'
>>> dd['key2'] # key2不存在,返回默认值
'N/A'
OrderedDict
注意,OrderedDict的Key会按照插入的顺序排列,不是Key本身排序:
>>> od = OrderedDict()
>>> od['z'] = 1
>>> od['y'] = 2
>>> od['x'] = 3
>>> list(od.keys()) # 按照插入的Key的顺序返回
['z', 'y', 'x']
ChainMap
ChainMap可以把一组dict串起来并组成一个逻辑上的dict。ChainMap本身也是一个dict,但是查找的时候,会按照顺序在内部的dict依次查找。
什么时候使用ChainMap最合适?举个例子:应用程序往往都需要传入参数,参数可以通过命令行传入,可以通过环境变量传入,还可以有默认参数。我们可以用ChainMap实现参数的优先级查找,即先查命令行参数,如果没有传入,再查环境变量,如果没有,就使用默认参数。
下面的代码演示了如何查找user和color这两个参数:
from collections import ChainMap
import os, argparse
# 构造缺省参数:
defaults = {
'color': 'red',
'user': 'guest'
}
# 构造命令行参数:
parser = argparse.ArgumentParser()
parser.add_argument('-u', '--user')
parser.add_argument('-c', '--color')
namespace = parser.parse_args()
command_line_args = { k: v for k, v in vars(namespace).items() if v }
# 组合成ChainMap:
combined = ChainMap(command_line_args, os.environ, defaults)
# 打印参数:
print('color=%s' % combined['color'])
print('user=%s' % combined['user'])
没有任何参数时,打印出默认参数:
$ python3 use_chainmap.py
color=red
user=guest
当传入命令行参数时,优先使用命令行参数:
$ python3 use_chainmap.py -u bob
color=red
user=bob
同时传入命令行参数和环境变量,命令行参数的优先级较高:
$ user=admin color=green python3 use_chainmap.py -u bob
color=green
user=bob
Counter
Counter是一个简单的计数器,例如,统计字符出现的个数:
>>> from collections import Counter
>>> c = Counter()
>>> for ch in 'programming':
... c[ch] = c[ch] + 1
...
>>> c
Counter({'g': 2, 'm': 2, 'r': 2, 'a': 1, 'i': 1, 'o': 1, 'n': 1, 'p': 1})
>>> c.update('hello') # 也可以一次性update
>>> c
Counter({'r': 2, 'o': 2, 'g': 2, 'm': 2, 'l': 2, 'p': 1, 'a': 1, 'i': 1, 'n': 1, 'h': 1, 'e': 1})
Base64是一种任意二进制到文本字符串的编码方法,常用于在URL、Cookie、网页中传输少量二进制数据。
编码原理
用记事本打开exe、jpg、pdf这些文件时,我们都会看到一大堆乱码,因为二进制文件包含很多无法显示和打印的字符,所以,如果要让记事本这样的文本处理软件能处理二进制数据,就需要一个二进制到字符串的转换方法。Base64是一种最常见的二进制编码方法。
Base64的原理很简单,首先,准备一个包含64个字符的数组:
['A', 'B', 'C', ... 'a', 'b', 'c', ... '0', '1', ... '+', '/']
然后,对二进制数据进行处理,每3个字节一组,一共是3x8=24bit,划为4组,每组正好6个bit:
这样我们得到4个数字作为索引,然后查表,获得相应的4个字符,就是编码后的字符串。
所以,Base64编码会把3字节的二进制数据编码为4字节的文本数据,长度增加33%,好处是编码后的文本数据可以在邮件正文、网页等直接显示。
如果要编码的二进制数据不是3的倍数,最后会剩下1个或2个字节怎么办?Base64用\x00字节在末尾补足后,再在编码的末尾加上1个或2个=号,表示补了多少字节,解码的时候,会自动去掉。
Python内置的base64可以直接进行base64的编解码:
>>> import base64
>>> base64.b64encode(b'binary\x00string')
b'YmluYXJ5AHN0cmluZw=='
>>> base64.b64decode(b'YmluYXJ5AHN0cmluZw==')
b'binary\x00string'
由于标准的Base64编码后可能出现字符+和/,在URL中就不能直接作为参数,所以又有一种"url safe"的base64编码,其实就是把字符+和/分别变成-和_:
>>> base64.b64encode(b'i\xb7\x1d\xfb\xef\xff')
b'abcd++//'
>>> base64.urlsafe_b64encode(b'i\xb7\x1d\xfb\xef\xff')
b'abcd--__'
>>> base64.urlsafe_b64decode('abcd--__')
b'i\xb7\x1d\xfb\xef\xff'
由于=字符也可能出现在Base64编码中,但=用在URL、Cookie里面会造成歧义,所以,很多Base64编码后会把=去掉:
# 标准Base64:
'abcd' -> 'YWJjZA=='
# 自动去掉=:
'abcd' -> 'YWJjZA'
去掉=后怎么解码呢?因为Base64是把3个字节变为4个字节,所以,Base64编码的长度永远是4的倍数,因此,需要加上=把Base64字符串的长度变为4的倍数,就可以正常解码了。
Python提供了一个struct模块来解决bytes和其他二进制数据类型的转换。
>>> import struct
>>> struct.pack('>I', 10240099)
b'\x00\x9c@c'
pack的第一个参数是处理指令,’>I’的意思是:
> 表示字节顺序是big-endian,也就是网络序,I表示4字节无符号整数。
后面的参数个数要和处理指令一致。
unpack把bytes变成相应的数据类型:
>>> struct.unpack('>IH', b'\xf0\xf0\xf0\xf0\x80\x80')
(4042322160, 32896)
根据>IH的说明,后面的bytes依次变为I:4字节无符号整数和H:2字节无符号整数。
struct模块定义的数据类型可以参考Python官方文档:
https://docs.python.org/3/library/struct.html#format-characters
Windows的位图文件(.bmp)是一种非常简单的文件格式,读入前30个字节来分析:
>>> s = b'\x42\x4d\x38\x8c\x0a\x00\x00\x00\x00\x00\x36\x00\x00\x00\x28\x00\x00\x00\x80\x02\x00\x00\x68\x01\x00\x00\x01\x00\x18\x00'
BMP格式采用小端方式存储数据,文件头的结构按顺序如下:
两个字节:'BM’表示Windows位图,'BA’表示OS/2位图; 一个4字节整数:表示位图大小; 一个4字节整数:保留位,始终为0; 一个4字节整数:实际图像的偏移量; 一个4字节整数:Header的字节数; 一个4字节整数:图像宽度; 一个4字节整数:图像高度; 一个2字节整数:始终为1; 一个2字节整数:颜色数。
所以,组合起来用unpack读取:
>>> struct.unpack('
结果显示,b’B’、b’M’说明是Windows位图,位图大小为640x360,颜色数为24。
Python的hashlib提供了常见的摘要算法,如MD5,SHA1等等。
摘要算法又称哈希算法、散列算法。它通过一个函数,把任意长度的数据转换为一个长度固定的数据串(通常用16进制的字符串表示)。
可见,摘要算法就是通过摘要函数f()对任意长度的数据data计算出固定长度的摘要digest,目的是为了发现原始数据是否被人篡改过。
MD5是最常见的摘要算法,速度很快,生成结果是固定的128 bit字节,通常用一个32位的16进制字符串表示。
import hashlib
md5 = hashlib.md5()
md5.update('how to use md5 in '.encode('utf-8'))
md5.update('python hashlib?'.encode('utf-8'))
print(md5.hexdigest())
//计算结果
d26a53750bc40b38b65a520292f69306
另一种常见的摘要算法是SHA1,调用SHA1和调用MD5完全类似, SHA1的结果是160 bit字节,通常用一个40位的16进制字符串表示。
比SHA1更安全的算法是SHA256和SHA512,不过越安全的算法不仅越慢,而且摘要长度更长。
由于常用口令的MD5值很容易被计算出来,所以,要确保存储的用户口令不是那些已经被计算出来的常用口令的MD5,这一方法通过对原始口令加一个复杂字符串来实现,俗称“加盐”:
def calc_md5(password):
return get_md5(password + 'the-Salt')
经过Salt处理的MD5口令,只要Salt不被黑客知道,即使用户输入简单口令,也很难通过MD5反推明文口令。
但是如果有两个用户都使用了相同的简单口令比如123456,在数据库中,将存储两条相同的MD5值,这说明这两个用户的口令是一样的。有没有办法让使用相同口令的用户存储不同的MD5呢?
如果假定用户无法修改登录名,就可以通过把登录名作为Salt的一部分来计算MD5,从而实现相同口令的用户也存储不同的MD5。
摘要算法在很多地方都有广泛的应用。要注意摘要算法不是加密算法,不能用于加密(因为无法通过摘要反推明文),只能用于防篡改,但是它的单向计算特性决定了可以在不存储明文口令的情况下验证用户口令。
如果salt是我们自己随机生成的,通常我们计算MD5时采用md5(message + salt)。但实际上,把salt看做一个“口令”,加salt的哈希就是:计算一段message的哈希时,根据不同口令计算出不同的哈希。要验证哈希值,必须同时提供正确的口令。
这实际上就是Hmac算法:Keyed-Hashing for Message Authentication。它通过一个标准算法,在计算哈希的过程中,把key混入计算过程中。
和我们自定义的加salt算法不同,Hmac算法针对所有哈希算法都通用,无论是MD5还是SHA-1。采用Hmac替代我们自己的salt算法,可以使程序算法更标准化,也更安全。
Python自带的hmac模块实现了标准的Hmac算法。我们来看看如何使用hmac实现带key的哈希。
我们首先需要准备待计算的原始消息message,随机key,哈希算法,这里采用MD5,使用hmac的代码如下
>>> import hmac
>>> message = b'Hello, world!'
>>> key = b'secret'
>>> h = hmac.new(key, message, digestmod='MD5')
>>> # 如果消息很长,可以多次调用h.update(msg)
>>> h.hexdigest()
'fa4ee7d173f2d97ee79022d1a7355bcf'
Python内置的hmac模块实现了标准的Hmac算法,它利用一个key对message计算“杂凑”后的hash,使用hmac算法比标准hash算法更安全,因为针对相同的message,不同的key会产生不同的hash。
编写__enter__和__exit__仍然很繁琐,因此Python的标准库contextlib提供了更简单的写法,上面的代码可以改写如下:
from contextlib import contextmanager
class Query(object):
def __init__(self, name):
self.name = name
def query(self):
print('query info about %s' % self.name)
@contextmanager
def create_query(name):
print('Begin')
q = Query(name)
yield q
print('End')
with create_query('HaHa') as q:
q.query()
很多时候,我们希望在某段代码执行前后自动执行特定代码,也可以用@contextmanager实现。例如:
@contextmanager
def tag(name):
print("<%s>" % name)
yield
print("%s>" % name)
with tag("h1"):
print("hello")
print("world")
//执行结果
hello
world
代码的执行顺序是:
因此,@contextmanager让我们通过编写generator来简化上下文管理。
urllib提供了一系列用于操作URL的功能。
urllib的request模块可以非常方便地抓取URL内容,也就是发送一个GET请求到指定的页面,然后返回HTTP的响应:
from urllib import request
import json
with request.urlopen('https://yesno.wtf/api') as f:
data = f.read()
print('Status: ', f.status, f.reason)
# for k, v in f.getheaders():
# print('%s : %s' % (k, v))
print('Data: ', data.decode('utf-8'))
if f.status == 200:
jsonData = json.loads(data.decode('utf-8'))
print('JsonData Answer: ', jsonData['answer'])
结果为:
Status: 200 OK
Data: {"answer":"yes","forced":false,"image":"https://yesno.wtf/assets/yes/14-b57c6dc03aa15a4b18f53eb50d6197ee.gif"}
JsonData: yes
如果要以POST发送一个请求,只需要把参数data以bytes形式传入。
我们模拟一个微博登录,先读取登录的邮箱和口令,然后按照weibo.cn的登录页的格式以username=xxx&password=xxx的编码传入:
from urllib import request, parse
print('Login to weibo.cn...')
email = input('Email: ')
passwd = input('Password: ')
login_data = parse.urlencode([
('username', email),
('password', passwd),
('entry', 'mweibo'),
('client_id', ''),
('savestate', '1'),
('ec', ''),
('pagerefer', 'https://passport.weibo.cn/signin/welcome?entry=mweibo&r=http%3A%2F%2Fm.weibo.cn%2F')
])
req = request.Request('https://passport.weibo.cn/sso/login')
req.add_header('Origin', 'https://passport.weibo.cn')
req.add_header('User-Agent', 'Mozilla/6.0 (iPhone; CPU iPhone OS 8_0 like Mac OS X) AppleWebKit/536.26 (KHTML, like Gecko) Version/8.0 Mobile/10A5376e Safari/8536.25')
req.add_header('Referer', 'https://passport.weibo.cn/signin/login?entry=mweibo&res=wel&wm=3349&r=http%3A%2F%2Fm.weibo.cn%2F')
with request.urlopen(req, data=login_data.encode('utf-8')) as f:
print('Status:', f.status, f.reason)
for k, v in f.getheaders():
print('%s: %s' % (k, v))
print('Data:', f.read().decode('utf-8'))
如果登录成功,我们获得的响应如下:
Status: 200 OK
Server: nginx/1.2.0
...
Set-Cookie: SSOLoginState=1432620126; path=/; domain=weibo.cn
...
Data: {"retcode":20000000,"msg":"","data":{...,"uid":"1658384301"}}
urllib提供的功能就是利用程序去执行各种HTTP请求。如果要模拟浏览器完成特定功能,需要把请求伪装成浏览器。伪装的方法是先监控浏览器发出的请求,再根据浏览器的请求头来伪装,User-Agent头就是用来标识浏览器的。
操作XML有两种方法:DOM和SAX。DOM会把整个XML读入内存,解析为树,因此占用内存大,解析慢,优点是可以任意遍历树的节点。SAX是流模式,边读边解析,占用内存小,解析快,缺点是我们需要自己处理事件。
正常情况下,优先考虑SAX,因为DOM实在太占内存。
在Python中使用SAX解析XML非常简洁,通常我们关心的事件是start_element,end_element和char_data,准备好这3个函数,然后就可以解析xml了。
举个例子,当SAX解析器读到一个节点时:
python
会产生3个事件:
start_element事件,在读取时;
char_data事件,在读取python时;
end_element事件,在读取时。
用代码实验一下:
from xml.parsers.expat import ParserCreate
class DefaultSaxHandler(object):
def start_element(self, name, attrs):
print('sax:start_element: %s, attrs: %s' % (name, str(attrs)))
def end_element(self, name):
print('sax:end_element: %s' % name)
def char_data(self, text):
print('sax:char_data: %s' % text)
xml = r'''
'''
handler = DefaultSaxHandler()
parser = ParserCreate()
parser.StartElementHandler = handler.start_element
parser.EndElementHandler = handler.end_element
parser.CharacterDataHandler = handler.char_data
parser.Parse(xml)
//测试结果
sax:start_element: ol, attrs: {}
sax:char_data:
sax:char_data:
sax:start_element: li, attrs: {}
sax:start_element: a, attrs: {'href': '/python'}
sax:char_data: Python
sax:end_element: a
sax:end_element: li
sax:char_data:
sax:char_data:
sax:start_element: li, attrs: {}
sax:start_element: a, attrs: {'href': '/ruby'}
sax:char_data: Ruby
sax:end_element: a
sax:end_element: li
sax:char_data:
sax:end_element: ol
如果我们要编写一个搜索引擎,第一步是用爬虫把目标网站的页面抓下来,第二步就是解析该HTML页面,看看里面的内容到底是新闻、图片还是视频。
假设第一步已经完成了,第二步应该如何解析HTML呢?
HTML本质上是XML的子集,但是HTML的语法没有XML那么严格,所以不能用标准的DOM或SAX来解析HTML。
好在Python提供了HTMLParser来非常方便地解析HTML,只需简单几行代码:
from html.parser import HTMLParser
from html.entities import name2codepoint
class MyHTMLParser(HTMLParser):
def handle_starttag(self, tag, attrs):
print('<%s>' % tag)
def handle_endtag(self, tag):
print('%s>' % tag)
def handle_startendtag(self, tag, attrs):
print('<%s/>' % tag)
def handle_data(self, data):
print(data)
def handle_comment(self, data):
print('')
def handle_entityref(self, name):
print('&%s;' % name)
def handle_charref(self, name):
print('%s;' % name)
parser = MyHTMLParser()
parser.feed('''
Some html HTML tutorial...
END
''')
//test结果
Some
html
HTML tutorial...
END
特殊字符有两种,一种是英文表示的 ,一种是数字表示的Ӓ,这两种字符都可以通过Parser解析出来。
找一个网页,例如https://www.python.org/events/python-events/,用浏览器查看源码并复制,然后尝试解析一下HTML,输出Python官网发布的会议时间、名称和地点。
from urllib import request
import re
Name = r'(.*)
' #匹配名称的正则
Location = r'(.*)' #匹配地点的正则
Time = r'' #匹配年份
#处理html内的信息并输出正则到的内容
def delInf(URL):
strInf = request.urlopen(URL).read().decode('utf-8') #整个网页的信息采用utf-8的编码格式来
name = re.findall(Name, strInf) #正则匹配内容,返回所有匹配到的项,返回的是一个列表形式
location = re.findall(Location, strInf)
time = re.findall(Time, strInf)
year = re.findall(Year, strInf)
for index in range(0, len(name)):
print('会议名称:'+name[index])
print('会议地点:' + location[index])
print('会议时间:' + time[index].replace('–','-')) #由于特殊字符的存在,这里要替换一下
print('会议年份:' + year[index]+'\n')
if __name__ == '__main__':
URL = 'https://www.python.org/events/python-events/'
delInf(URL)
//test结果
会议名称:PyCon JP 2020
会议地点:Online
会议时间:28 Aug. - 29 Aug.
会议年份: 2020
会议名称:PyCon TW 2020
会议地点:International Conference Hall ,No.1, University Road, Tainan City 701, Taiwan
会议时间:05 Sept. - 06 Sept.
会议年份: 2020
会议名称:PyCon SK 2020
会议地点:Bratislava, Slovakia
会议时间:11 Sept. - 13 Sept.
会议年份: 2020
会议名称:DjangoCon Europe 2020
会议地点:Porto, Portugal
会议时间:16 Sept. - 20 Sept.
会议年份: 2020
会议名称:PyCon APAC 2020
会议地点:Kota Kinabalu, Sabah, Malaysia
会议时间:19 Sept. - 20 Sept.
会议年份: 2020
会议名称:DragonPy 2020
会议地点:Ljubljana, Slovenia
会议时间:19 Sept. - 20 Sept.
会议年份: 2020
会议名称:EuroSciPy 2020 (canceled)
会议地点:Bilbao, Spain
会议时间:27 July - 31 July
会议年份: 2020
会议名称:EuroPython 2020 Online
会议地点:Online Event
会议时间:23 July - 26 July
会议年份: 2020
廖雪峰的python教程