torch之optimizer.step() 和loss.backward()和scheduler.step()的关系与区别

torch之optimizer.step() 和loss.backward()和scheduler.step()的关系与区别

  • 由于接触torch时间不久,所有对此比较困惑,遇到如下博文解释十分详细,故转载至此。(原文地址)

1.optimizer.step()

因为有人问我optimizer的step为什么不能放在min-batch那个循环之外,还有optimizer.step和loss.backward的区别;那么我想把答案记录下来。

首先需要明确optimzier优化器的作用, 形象地来说,优化器就是需要根据网络反向传播的梯度信息来更新网络的参数,以起到降低loss函数计算值的作用,这也是机器学习里面最一般的方法论。

  1. 从优化器的作用出发,要使得优化器能够起作用,需要主要两个东西:1. 优化器需要知道当前的网络或者别的什么模型的参数空间,这也就是为什么在训练文件中,正式开始训练之前需要将网络的参数放到优化器里面,比如使用pytorch的话总会出现类似如下的代码:
optimizer_G = Adam(model_G.parameters(), lr=train_c.lr_G)   # lr 使用的是初始lr
optimizer_D = Adam(model_D.parameters(), lr=train_c.lr_D)
  1. 需要知道反向传播的梯度信息,我们还是从代码入手,如下所示是Pytorch 中SGD优化算法的step()函数具体写法,具体SGD的写法放在参考部分
def step(self, closure=None):
        """Performs a single optimization step.
        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            loss = closure()
 
        for group in self.param_groups:
            weight_decay = group['weight_decay']
            momentum = group['momentum']
            dampening = group['dampening']
            nesterov = group['nesterov']
 
            for p in group['params']:
                if p.grad is None:
                    continue
                d_p = p.grad.data
                if weight_decay != 0:
                    d_p.add_(weight_decay, p.data)
                if momentum != 0:
                    param_state = self.state[p]
                    if 'momentum_buffer' not in param_state:
                        buf = param_state['momentum_buffer'] = d_p.clone()
                    else:
                        buf = param_state['momentum_buffer']
                        buf.mul_(momentum).add_(1 - dampening, d_p)
                    if nesterov:
                        d_p = d_p.add(momentum, buf)
                    else:
                        d_p = buf
 
                p.data.add_(-group['lr'], d_p)
 
        return loss

从上面的代码可以看到step这个函数使用的是参数空间(param_groups)中的grad,也就是当前参数空间对应的梯度,这也就解释了为什么optimzier使用之前需要zero清零一下,因为如果不清零,那么使用的这个grad就得同上一个mini-batch有关,这不是我们需要的结果。再回过头来看,我们知道optimizer更新参数空间需要基于反向梯度,因此,当调用optimizer.step()的时候应当是loss.backward()的时候(loss.backward()的具体运算过程可以参看Pytorch 入门),这也就是经常会碰到,如下情况

total_loss.backward()
optimizer_G.step()

loss.backward()在前,然后跟一个step。

那么为什么optimizer.step()需要放在每一个batch训练中,而不是epoch训练中,这是因为现在的mini-batch训练模式是假定每一个训练集就只有mini-batch这样大,因此实际上可以将每一次mini-batch看做是一次训练,一次训练更新一次参数空间,因而optimizer.step()放在这里。


2.scheduler.step()

scheduler.step() 按照Pytorch的定义是用来 更新优化器的学习率的,一般是按照epoch为单位进行更换,即多少个epoch后更换一次学习率,因而scheduler.step()放在epoch这个大循环下。通常我们有:

optimizer = optim.SGD(model.parameters(), lr = 0.01, momentum = 0.9)
scheduler = lr_scheduler.StepLR(optimizer, step_size = 100, gamma = 0.1)
model = net.train(model, loss_function, optimizer, scheduler, num_epochs = 100)

在scheduler的step_size表示scheduler.step()每调用step_size次,对应的学习率就会按照策略调整一次。所以如果scheduler.step()是放在mini-batch里面,那么step_size指的是经过这么多次迭代,学习率改变一次。

你可能感兴趣的:(torch,python,Deep,Learning,计算机视觉)