车道线检测(二)——使用MNN部署PINet

目录

一、MNN简介

二、MNN编译

三、MNN部署PINet模型

pytorch转onnx

onnx转mnn

mnn部署

一、MNN简介

                是阿里开源的一个轻量级的深度神经网络引擎,支持深度学习的推理与训练,适用于服务器/个人电脑/手机/嵌入式各类设备。目前,MNN已经在阿里巴巴的手机淘宝、手机天猫、优酷等30多个App中使用,覆盖直播、短视频、搜索推荐、商品图像搜索、互动营销、权益发放、安全风控等场景。github地址https://github.com/alibaba/MNN

二、MNN编译

        在Linux平台编译流程如下。

1.依赖项安装

  • cmake(3.10 以上)
  • protobuf (3.0 以上)
    • 指protobuf库以及protobuf编译器。版本号使用 protoc --version 打印出来。
    • 在某些Linux发行版上这两个包是分开发布的,需要手动安装
    • Ubuntu需要分别安装 libprotobuf-dev 以及 protobuf-compiler 两个包
    • sudo apt install libprotobuf-dev
    • sudo apt install protobuf-compiler
    • Mac OS 上使用 brew install protobuf 进行安装
  • C++编译器
    • GCC或Clang皆可 (macOS无需另外安装,Xcode自带)
      • GCC推荐版本4.9以上
        • 在某些发行版上GCC (GNU C编译器)和G++(GNU C++编译器是分开安装的)。
        • 同样以Ubuntu为例,需要分别安装 gccg++ 
      • Clang 推荐版本3.9以上
  • zlib

2.下载MNN的代码,解压后如下操作

mkdir -p build/install

cd build

cmake .. -DMNN_OPENCL=true -DMNN_SEP_BUILD=false -DMNN_BUILD_CONVERTER=true -DMNN_BUILD_TORCH=true -DMNN_BUILD_DEMO=true -DMNN_BUILD_BENCHMARK=true -DMNN_BUILD_TOOLS=true -DCMAKE_INSTALL_PREFIX=./install

make -j4

make install

        编译产生的头文件和库文件位于install目录下。

三、MNN部署PINet模型

        首先模型需要转换为mnn定义的格式,流程为pytorch——onnx——mnn。

pytorch转onnx

        下载PINet代码,配置好pytorch运行环境。代码库中onnx_converter.py提供了转换onnx模型的函数,onnx_inference.py提供了使用onnx推理的demo。运行onnx_conveter.py即可得到onnx模型。

onnx转mnn

./MNNConvert -f ONNX --modelFile pinet_v2.onnx --MNNModel pinet_v2.mnn --bizCode biz

        由此得到pinet_v2.mnn模型。

mnn部署

        参考onnx_inference.py和mnn的API接口做相关的部署,需要注意如下几点。

1)输入图像的格式,是否归一化;这里根据demo示例可知图像格式为BGR,且归一化到[0,1]

2)可使用Netron查看网络获取输入输出节点名称,据此获得输入输出的tensor

3)输入输出tensor的数据格式,根据MNN的官方文档说明,若对其内部格式不清楚,建议输入输出时显式转换为指定格式的tensor后再访问数据。

#include 
#include 

#include 
#include 
#define MNN_OPEN_TIME_TRACE
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 


using namespace MNN;
using namespace MNN::CV;
using namespace MNN::Express;


int main(int argc, char** argv)
{
	std::shared_ptr net(Interpreter::createFromFile("pinet_v2.mnn"));
	//net->setCacheFile(".tempcache");
	//net->setSessionMode(Interpreter::Session_Debug);
	//net->setSessionMode(Interpreter::Session_Resize_Defer);


	ScheduleConfig config;
	config.numThread = 1;
	config.type = MNN_FORWARD_CPU;
	config.backupType = MNN_FORWARD_OPENCL;

	BackendConfig backendConfig;
	backendConfig.precision = static_cast(BackendConfig::Precision_Low);
	config.backendConfig = &backendConfig;

	auto session = net->createSession(config);
	auto input = net->getSessionInput(session, NULL);

	std::vector shape = input->shape();
	std::vector nhwc_shape{ 1, shape[2], shape[3], shape[1] };
	auto nhwc_tensor = new Tensor(input, MNN::Tensor::TENSORFLOW);
	cv::Mat img = cv::imread("3.jpg");
	cv::Mat img_float;
	cv::Mat resized_img;
	cv::resize(img, resized_img, cv::Size(shape[3], shape[2]));
	resized_img.convertTo(resized_img, CV_32FC3);
	resized_img = resized_img / 255.f;

	memcpy(nhwc_tensor->host(), resized_img.data, nhwc_tensor->size());
	input->copyFromHostTensor(nhwc_tensor);

	MNN::Timer time;
	time.reset();
	net->runSession(session);
	MNN_PRINT("use time %f ms\n", time.durationInUs()/ 1000.f);


	auto offset_output = net->getSessionOutput(session, "2830");
	auto nchw_offset_output = new Tensor(offset_output, Tensor::CAFFE);
	offset_output->copyToHostTensor(nchw_offset_output);

	auto feature_output = net->getSessionOutput(session, "2841");
	auto nchw_feature_output = new Tensor(feature_output, Tensor::CAFFE);
	feature_output->copyToHostTensor(nchw_feature_output);

	auto confidence_output = net->getSessionOutput(session, "input.1560");
	auto nchw_confidence_output = new Tensor(confidence_output, Tensor::CAFFE);
	confidence_output->copyToHostTensor(nchw_confidence_output);
	shape = confidence_output->shape();


	// get lines

	std::vector> lines_predicted, lines_final;
	std::vector> line_features;

	float width_scale_factor = img.cols / shape[3];
	float height_scale_factor = img.rows / shape[2];


	float* confidence_buf = nchw_confidence_output->host();
	float* feature_buf = nchw_feature_output->host();
	float* offset_buf = nchw_offset_output->host();

	float point_threshold = 0.96;
	float instance_threshold = 0.08;


	for (int h = 0; h < shape[2]; h++)
	{
		for (int w = 0; w < shape[3]; w++)
		{
			int idx = h * shape[3] + w;
			float confidence = confidence_buf[idx];
			if (confidence < point_threshold)
				continue;

			float offset_x = offset_buf[idx];
			float offset_y = offset_buf[shape[3] * shape[2] + idx];
			std::vector feature;
			feature.push_back(feature_buf[idx]);
			feature.push_back(feature_buf[shape[3] * shape[2] + idx]);
			feature.push_back(feature_buf[shape[3] * shape[2] * 2 + idx]);
			feature.push_back(feature_buf[shape[3] * shape[2] * 3 + idx]);

			cv::Point2f pt;
			pt.x = (offset_x + w) * width_scale_factor;
			pt.y = (offset_y + h) * height_scale_factor;

			if (pt.x > img.cols - 1 || pt.x < 0 || pt.y > img.rows - 1 || pt.y < 0)
				continue;

			if (lines_predicted.size() == 0)
			{
				line_features.push_back(feature);
				std::vector line;
				line.push_back(pt);
				lines_predicted.push_back(line);
			}
			else
			{
				int min_feature_idx = -1;
				float min_feature_dis = 10000;
				for (int n = 0; n < line_features.size(); n++)
				{
					float dis = 0;
					dis += (feature[0] - line_features[n][0]) * (feature[0] - line_features[n][0]);
					dis += (feature[1] - line_features[n][1]) * (feature[1] - line_features[n][1]);
					dis += (feature[2] - line_features[n][2]) * (feature[2] - line_features[n][2]);
					dis += (feature[3] - line_features[n][3]) * (feature[3] - line_features[n][3]);

					if (min_feature_dis > dis)
					{
						min_feature_dis = dis;
						min_feature_idx = n;
					}
				}
				if (min_feature_dis < instance_threshold)
				{
					line_features[min_feature_idx][0] = (line_features[min_feature_idx][0] * lines_predicted[min_feature_idx].size()
						+ feature[0]) / (lines_predicted[min_feature_idx].size() + 1);
					line_features[min_feature_idx][1] = (line_features[min_feature_idx][1] * lines_predicted[min_feature_idx].size()
						+ feature[1]) / (lines_predicted[min_feature_idx].size() + 1);
					line_features[min_feature_idx][2] = (line_features[min_feature_idx][2] * lines_predicted[min_feature_idx].size()
						+ feature[2]) / (lines_predicted[min_feature_idx].size() + 1);
					line_features[min_feature_idx][3] = (line_features[min_feature_idx][3] * lines_predicted[min_feature_idx].size()
						+ feature[3]) / (lines_predicted[min_feature_idx].size() + 1);
					lines_predicted[min_feature_idx].push_back(pt);

				}
				else
				{
					line_features.push_back(feature);
					std::vector line;
					line.push_back(pt);
					lines_predicted.push_back(line);

				}
			}

		}
	}

	delete nchw_confidence_output;
	delete nchw_feature_output;
	delete nchw_offset_output;
	delete nhwc_tensor;
	// draw point

	cv::Mat draw_lines;
	img.copyTo(draw_lines);

	for (int n = 0; n < lines_predicted.size(); n++)
	{
		if (lines_predicted[n].size() < 3)
			continue;
		cv::RNG rng(cv::getTickCount());
		cv::Scalar color = cv::Scalar(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255));
		for (int i = 0; i < lines_predicted[n].size(); i++)
			cv::circle(draw_lines, lines_predicted[n][i], 5, color, 3);
		lines_final.push_back(lines_predicted[n]);
	}

	for (int n = 0; n < lines_final.size(); n++)
	{
		cv::Vec4f param;
		cv::fitLine(lines_final[n], param, CV_DIST_HUBER, 0, 0.01, 0.01);
		float vx, vy, x0, y0;
		vx = param[0];
		vy = param[1];
		x0 = param[2];
		y0 = param[3];
		float x1 = x0 + 1000 * vx;
		float y1 = y0 + 1000 * vy;
		x0 = x0 - 1000 * vx;
		y0 = y0 - 1000 * vy;
		cv::line(draw_lines, cv::Point(x0, y0), cv::Point(x1, y1), cv::Scalar(0, 0, 255), 2);

	}

	cv::imwrite("result.jpg", draw_lines);
	return 0;

}

推理效果         

        推理结果如下图所示,完毕。

车道线检测(二)——使用MNN部署PINet_第1张图片

 

 

你可能感兴趣的:(深度学习,mnn,人工智能,深度学习)