- AIGC时代品牌突围战:10招玩转DeepSeek内容推荐(深度扩展版)
白雪讲堂
人工智能大数据机器学习
一、认知革命:从SEO到GEO的生死迭代案例对比:传统SEO困境:某家电品牌2023年投入200万SEO优化,关键词排名TOP3但流量下降42%(SEMrush数据)GEO突破案例:某母婴品牌通过结构化数据改造,AI推荐量从日均300次飙升至1.2万次(来源:DeepSeek官方案例库)实战要点:内容形态改造:将产品参数表升级为JSON-LD格式(某手机品牌实现参数类问题100%引用)流量分配逻辑
- 工业镜头选型技巧——考虑应用特点(内附实例)
51camera
机器视觉工业镜头
在进行工业镜头选型时,当与客户讨论镜头的某些参数时,客户会希望每个参数均为最理想的状态。但在实际应用中,很难满足理想要求,此时需要充分考虑项目的应用特点,对镜头的参数做一些适当且合理的取舍。为了便于理解,下面将通过两个选型案例来说明。以Moritex的工业镜头为例。1、检测精度与视野相机:9568*6380,3.76*3.76um视野:长边60mm要求:远心镜头镜头选型过程计算得知相机芯片尺寸是3
- Python自动化运维开发系列—CICD项目
weixin_46240874
导语都忘记是什么时候知道python的了,我是搞linux运维的,早先只是知道搞运维必须会shell,要做一些运维自动化的工作,比如实现一些定时备份数据啊、批量执行某个操作啊、写写监控脚本什么的。后来发现工作量大的时候shell开始变慢,实现某个功能使用shell感觉力不从心,听人说python能实现shell能做的一切功能,而且开发效率高,速度快,慢慢的就认识了python,多多少少看点简单的东
- 使用LangChain实现大规模语言模型自发现推理结构
VYSAHF
langchain语言模型人工智能python
使用LangChain实现大规模语言模型自发现推理结构在现代自然语言处理(NLP)的研究中,大规模语言模型(LLMs)已经展示了强大的能力。然而,在应对复杂的推理问题时,传统的提示方法常常力不从心。这篇文章将带您了解SELF-DISCOVER,一种新兴的框架,如何通过LangChain来实现自动化、动态化的推理结构构建,以提高LLMs的性能。技术背景介绍大规模语言模型(如GPT-4和PaLM2)已
- Apache Storm:实时数据处理的闪电战
Aaron_945
Javaapachestorm大数据
文章目录ApacheStorm原理拓扑结构数据流处理容错机制官网链接基础使用安装与配置编写拓扑提交与运行高级使用状态管理窗口操作多语言支持优点高吞吐量低延迟可扩展性容错性总结ApacheStorm是一个开源的分布式实时计算系统,它允许你以极高的吞吐量处理无界数据流。Storm被广泛用于实时分析、在线机器学习、连续计算等多种场景。本文将深入探讨ApacheStorm的原理、基础使用、高级特性及其优点
- HoRain云--无需修改BIOS!Linux系统迁移根目录到新磁盘终极指南
HoRain 云小助手
linux运维服务器
HoRain云小助手:个人主页⛺️生活的理想,就是为了理想的生活!⛳️推荐前些天发现了一个超棒的服务器购买网站,性价比超高,大内存超划算!忍不住分享一下给大家。点击跳转到网站。目录⛳️推荐一、原理简析二、操作步骤(以Ubuntu为例)1.准备工作2.临时挂载新磁盘3.修改GRUB配置4.更新引导配置5.验证配置(重要!)三、故障排查(附解决方案)四、永久生效设置五、注意事项一、原理简析通过GRUB
- HoRain云--URI vs URL vs URN:彻底搞懂三者的区别与联系
HoRain 云小助手
java前端开发语言
HoRain云小助手:个人主页⛺️生活的理想,就是为了理想的生活!⛳️推荐前些天发现了一个超棒的服务器购买网站,性价比超高,大内存超划算!忍不住分享一下给大家。点击跳转到网站。目录⛳️推荐URIvsURLvsURN:彻底搞懂三者的区别与联系一、核心概念解析1.URI(统一资源标识符)2.URL(统一资源定位符)3.URN(统一资源名称)二、三者关系图解三、关键区别对比表四、日常应用场景五、技术冷知
- HoRain云--Node.js文件下载服务实战:Express实现安全高效的文件传输
HoRain云小助手
node.jsexpress安全
HoRain云小助手:个人主页个人专栏:《Linux系列教程》《c语言教程》⛺️生活的理想,就是为了理想的生活!⛳️推荐前些天发现了一个超棒的服务器购买网站,性价比超高,大内存超划算!忍不住分享一下给大家。点击跳转到网站。专栏介绍专栏名称专栏介绍《C语言》本专栏主要撰写C干货内容和编程技巧,让大家从底层了解C,把更多的知识由抽象到简单通俗易懂。《网络协议》本专栏主要是注重从底层来给大家一步步剖析网
- 如何用AI制作PPT,轻松实现高效演示
HUIPPT剑盾ai
人工智能软件科技aigcpowerpoint
如何用AI制作PPT,轻松实现高效演示!在今天这个快节奏的时代,我们的工作方式越来越依赖智能工具。而当涉及到演示文稿时,传统的PPT制作方式往往繁琐且耗时。很多人一提到制作PPT就头大,特别是在内容需要多次修改、调整布局和添加多媒体时,这个过程就像是一场无休止的拉锯战。可现在有了AI的帮助,制作PPT再也不需要那么复杂了。AI做PPT的技术,已经走到了一个全新的高度。你不再需要手动调整每一页的版式
- 自己用 Node 搭个 DeepSeek 用起来香麻了
李游Leo
环境配置AI视频教程node.jsdeep语言模型
不知道大家最近有没有关注DeepSeek,确实是火出圈了,过年串亲戚的大爷大妈们都能聊几句,而且不管是刷短视频,还是逛社交平台,到处都能看到大家在讨论DeepSeek。而且目前这把火还烧到美国去了,整的GPT都要免费了,而且文心外加开源+免费,就连王毅外长念完了诗之后都对外说了,不懂可以去查查deepseek。好家伙,这buff越叠越高啊,那这么好的东西,咱们是不是就要看一看了!!!不研究一下似乎
- 105页ppt解读华为供应链的变革模式和方法
智慧化智能化数字化方案
华为学习专栏华为华为供应链供应链数字化智慧供应链
华为供应链的变革与发展经历了从B2B到B2C的转型,通过强化产业链协同、打造核心能力备胎计划等方式应对“断供”挑战。在数字化转型的推动下,华为供应链规模不断扩大,组织架构也经历了螺旋式上升的发展。从供应链整合到端到端打通,再到保持稳健增长,华为不断优化供应链管理体系,提升产品竞争力。华为供应链的理论基础源于二战时期的美军后勤管理,经过不断发展,现已成为集成供应链(ISC)管理的重要组成部分。进入2
- 【Java】StampedLock浅谈
风起云涌~
java开发语言
1,概述在多读少写的环境,相比于ReadWriteLoock,StampedLock性能更胜一筹。试着想一下,如果使用ReadWriteLoock,当1万个读请求过来时,写的操作插入,就会被阻塞。但StampedLock不会,后者不基于AQS实现,它采用乐观锁的思维。所谓的乐观,即读取的时候,不会阻塞当前线程,相应会返回一个邮票,state。读取完毕后,只要验证手上的邮票判断数据是否变化即可,随后
- 工作流
weixin_34345753
数据库java人工智能
工作流谨以此文向从事工作流研究的前辈们致敬目录1工作流介绍12工作流类型12.1按工作流的性质分12.2按照重复性分12.3按照结构化程度分12.4按流程与数据表单的关系分12.5按应用类型分12.6按工作流模式分23工作流的应用场景23.1业务流程辅助办公软件23.2软件内部工作的顺控制23.3自动筛选查询类系统23.4自动化控制中24工作流平台介绍24.1BigbrossBossa34.2Br
- 【无标题】
退思精舍
r语言
一个农民企业家的家国情怀/作者:杨桂林高朵芬原创新时代报告文学文学新军2022-03-2809:41——谨以此文献给内蒙古佘太酒业成立十周年,并向为佘太酒业发展、壮大做过贡献的人们致敬!刚过完一九七九年春节,塞哈拉脚下的各个村落还没有开工,每家每户门窗上的红对联也未被强烈的沙尘暴刮走,那些脱光了叶子只剩下树干的白杨树,尽管抖起精神来,也抵挡不住北国的严寒,大地灰蒙蒙一片,好像万事万物依然沉浸在早春
- 模型上新!体验文心大模型4.5卓越性能,文心快码邀您探索
前端后端java人工智能程序员
3月16日,文心大模型4.5和文心大模型X1正式发布!当天,文心快码BaiduComate也发布了文心大模型4.5支持的新版本,为用户带来更加强大的智能交互体验。即日起,用户可以在文心快码BaiduComate的【Chat】功能中,选择切换至ERNIE-4.5-8K-Preview,体验这一新一代原生多模态大模型的卓越性能。文心大模型4.5原生多模态基础大模型文心大模型4.5是百度自主研发的新一代
- BioDeepAV:一个多模态基准数据集,包含超过1600个深度伪造视频,用于评估深度伪造检测器在面对未知生成器时的性能。
数据集
2024-11-29,由罗马尼亚布加勒斯特大学创建BioDeepAV数据集,它专门设计来评估最先进的深度伪造检测器在面对未见过的深度伪造生成器时的泛化能力,这对于提高检测器的鲁棒性和适应性具有重要意义。一、研究背景:随着生成模型的快速发展,深度伪造内容的逼真度不断提高,人们越来越难以在线检测出被操纵的媒体内容,从而容易受到各种诈骗的欺骗。这不仅对个人隐私构成威胁,也对社会信任和民主构成挑战。目前遇
- 【ArcGIS】从DEM中提取经纬度
榴女士
arcgis
老师给了我一幅DEM图像,由于后面的处理过程中需要该区域对应的SRTM1DEM数据,所以我必须先知道这幅DEM是哪个区域。由于没有其他的信息,我就不知道该怎么办了。后面查了一些网页,找到的解决办法是:通过DEM提取经纬度,这样就可以知道DEM的区域。把提取经纬度的过程记录下来,以防后面又忘记了。1、栅格转点【转换-由栅格转出-栅格转点】;2、打开点图层属性表,新建两个字段“lon”&“lat”;3
- 组织效能突围战:从人效洼地到行业标杆(下)
php运维人工智能
正如上一篇文章所说,人效低下往往带来一系列严重后果。很多企业开始意识到人效提升的必要性,但苦于找不到好的提升方案,不知该如何下手。今天继续来看六大模块和四个案例,相信会带给你新的启发。某消费品企业:优化营销费用管控,营销费比降低8个点AMT企源携手某消费品企业优化营销费用管理体系,优化管理流程、数字化落地全业务过程,闭环管理营销费用执行过程,分析营销费用数据,调整营销策略并优化投入。具体措施包括:
- Excel宏新手入门:开启高效数据处理之旅
CodeJourney.
算法人工智能数据库
Excel宏新手入门:开启高效数据处理之旅在数据处理和办公自动化领域,Excel是一款强大且应用广泛的工具。而Excel宏,作为其中一项极具价值的功能,能帮助用户自动执行重复性任务,大幅提升工作效率。对于Excel宏的新手而言,从基础开始学习并逐步掌握这一技能,将为日常工作带来极大便利。一、认识Excel宏:自动化办公的“魔法棒”Excel宏本质上是一组自动执行的操作指令集合,可类比为一个不知疲倦
- 组织效能突围战:从人效洼地到行业标杆(上)
人工智能
摘要组织在人力效能方面常面临多重困境:管理层缺乏科学管理方法和数据化决策支持,目标设定与资源配置不合理,引发资源错配与浪费;激励机制与员工需求错位,职业发展通道不清晰导致工作动力衰减;跨部门协作存在信息孤岛和流程壁垒,组织架构僵化难以快速响应市场变化……从而导致组织成本高企、人才流失加剧、市场反应迟缓、竞争力衰退等一系列问题。那么,如何提升组织人效,人效提升到底可以带来哪些改变?本文将通过六大模块
- 数据可视化:python画散点图scatter
西红柿爱吃小番茄
pythonpython数据可视化matplotlib
数据可视化:python画散点图scatter我想遍历一幅图的所有像素的h分量的值,然后用散点图表示出来。观察这幅图的h分量的值得变化范围。scatter函数的原型matplotlib.pyplot.scatter(x,y,s=20,c='b',marker='o',cmap=None,norm=None,vmin=None,vmax=None,linewidths=None,vert=None,
- JavaScript 的 requestAnimationFrame
小华0000
javascript开发语言ecmascript
在现代Web开发中,用户体验至关重要。动画作为用户交互的重要组成部分,如果处理不当,很容易出现卡顿、掉帧等问题,严重影响用户体验。幸运的是,JavaScript提供了一个强大的API:requestAnimationFrame(简称rAF),它为我们创建平滑、高效的动画提供了坚实的基础。本文将深入探讨requestAnimationFrame的原理、使用、高级技巧以及在实际项目中的应用,帮助你掌握
- ServerStatus牛逼!!
架构文摘JGWZ
学习工具开源软件
作为一名攻城狮,面对各种服务器内存飙高、CPU猛增、磁盘打满等等服务器问题,可谓是伤透了我们的心。不仅要开发,还要处理这些问题,大把的时间浪费了,这时候一个好的全面的监控工具尤为重要了。所以,带着这个问题,为大家一个酷炫高逼格的服务器探针的监控工具:ServerStatus介绍ServerStatus是一个免费开源的监控工具,并且提供了一个直观的Web页面,极大的方便了开发人员。特性实时监控,如在
- ICC2 高效进阶:set_host_options 命令精解,数字后端设计必备!
数字后端物理设计知识库
icc2命令每日精要后端性能优化
在数字后端物理设计的战场中,效率就是生命,而ICC2的set_host_options命令就是助力各位工程师和学子们快速提升效率的神器!今天就带大家深入探索这个命令的奥秘,让复杂的配置变得轻松简单。一、set_host_options的核心价值这个命令专注于多核处理的灵活配置,无论是多线程、分布式处理还是并行任务执行,它都能轻松驾驭。通过精准定义主机资源、核心数以及提交协议等关键参数,工程师们可以
- java实现卷积神经网络CNN(附带源码)
Katie。
Java实战项目java
Java实现卷积神经网络(CNN)项目详解目录项目概述1.1项目背景与意义1.2什么是卷积神经网络(CNN)1.3卷积神经网络的应用场景相关知识与理论基础2.1神经网络与深度学习概述2.2卷积操作与卷积层原理2.3激活函数与池化层2.4全连接层与损失函数2.5前向传播、反向传播与梯度下降项目需求与分析3.1项目目标3.2功能需求分析3.3性能与扩展性要求3.4异常处理与鲁棒性考虑系统设计与实现思路
- 文心一言提前免费,高性能大模型全面入局该咋看?
江瀚视野
人工智能机器人
3月16日,百度正式发布文心大模型4.5及文心大模型X1,在文心一言官网即可免费使用。这件事我们该怎么看?首先,从技术创新的角度来看,百度文心大模型4.5和X1的发布展示了百度在AI大模型领域的显著进步。文心大模型4.5作为首个原生多模态大模型,在多模态理解、文本和逻辑推理能力上的显著提升,使其在多项测试中表现优于GPT4.5,这体现了百度在AI技术研发上的深厚积累。同时,文心大模型X1作为深度思
- 计算机毕设论文灵魂模块:系统架构图设计终极指南(附资料)
计算机毕业设计小帅
课程设计毕业设计java系统架构
【关注我,毕业设计不迷茫】|6年辅导经验|帮助1200+学子顺利毕业大家好,我是程序员小帅,一名专注于计算机毕业设计全流程辅导的技术博主。专注JavaWeb,我深耕毕设领域6年,累计输出1200+原创项目案例,辅导成功率接近100%。如果你正在为选题、代码、论文或答辩发愁,这里能给你最落地的解决方案!为什么架构图是毕设的灵魂?1️⃣展示系统思维:用一张图说清技术选型逻辑2️⃣设计说明书:开发前必须
- 一文搞懂 AI Agent 与 AI 大模型的区别
a小胡哦
人工智能ManusAiagent
在人工智能蓬勃发展的当下,新术语和新技术层出不穷。AIAgent和AI大模型便是其中的“明星”,但不少人对它们的区别感到困惑。今天,我们就以Manus这类AIAgent为例,深入剖析AIAgent与一般AI大模型的不同之处。Manus:Manus定义与核心能力AI大模型AI大模型是基于深度学习架构,通过海量数据训练得到的复杂模型,像GPT-4、文心一言等。它们具备强大的知识储备和语言理解生成能力,
- YOLO11改进-模块-引入多尺度差异融合模块MDFM
一勺汤
YOLOv11模型改进系列深度学习人工智能YOLOYOLOv11目标检测模块改进
遥感变化检测(RSCD)专注于识别在不同时间获取的两幅遥感图像之间发生变化的区域。近年来,卷积神经网络(CNN)在具有挑战性的RSCD任务中展现出了良好的效果。然而,这些方法未能有效地融合双时相特征,也未提取出对后续RSCD任务有益的有用信息。此外,它们在特征聚合中没有考虑多层次特征交互,并且忽略了差异特征与双时相特征之间的关系,从而影响了RSCD的结果。为解决上述问题,本文通过孪生卷积网络提取不
- LVPECL(Low Voltage Positive Emitter-Coupled Logic)电平详解
美好的事情总会发生
电平标准接口电平嵌入式硬件硬件工程智能硬件
一、LVPECL的定义与核心特性LVPECL(低电压正射极耦合逻辑)是PECL(正射极耦合逻辑)的低电压版本,专为现代低功耗、高集成度系统优化,采用3.3V或2.5V供电。其继承了PECL的高速性能,同时通过降低电压减少功耗,广泛应用于高速通信、时钟分配和高可靠性场景。1.电气特性供电电压:3.3V(主流)、2.5V(部分器件)。电平范围:差分摆幅:约600mV(峰峰值),单端摆幅±300mV。共
- 对股票分析时要注意哪些主要因素?
会飞的奇葩猪
股票 分析 云掌股吧
众所周知,对散户投资者来说,股票技术分析是应战股市的核心武器,想学好股票的技术分析一定要知道哪些是重点学习的,其实非常简单,我们只要记住三个要素:成交量、价格趋势、振荡指标。
一、成交量
大盘的成交量状态。成交量大说明市场的获利机会较多,成交量小说明市场的获利机会较少。当沪市的成交量超过150亿时是强市市场状态,运用技术找综合买点较准;
- 【Scala十八】视图界定与上下文界定
bit1129
scala
Context Bound,上下文界定,是Scala为隐式参数引入的一种语法糖,使得隐式转换的编码更加简洁。
隐式参数
首先引入一个泛型函数max,用于取a和b的最大值
def max[T](a: T, b: T) = {
if (a > b) a else b
}
因为T是未知类型,只有运行时才会代入真正的类型,因此调用a >
- C语言的分支——Object-C程序设计阅读有感
darkblue086
applec框架cocoa
自从1972年贝尔实验室Dennis Ritchie开发了C语言,C语言已经有了很多版本和实现,从Borland到microsoft还是GNU、Apple都提供了不同时代的多种选择,我们知道C语言是基于Thompson开发的B语言的,Object-C是以SmallTalk-80为基础的。和C++不同的是,Object C并不是C的超集,因为有很多特性与C是不同的。
Object-C程序设计这本书
- 去除浏览器对表单值的记忆
周凡杨
html记忆autocompleteform浏览
&n
- java的树形通讯录
g21121
java
最近用到企业通讯录,虽然以前也开发过,但是用的是jsf,拼成的树形,及其笨重和难维护。后来就想到直接生成json格式字符串,页面上也好展现。
// 首先取出每个部门的联系人
for (int i = 0; i < depList.size(); i++) {
List<Contacts> list = getContactList(depList.get(i
- Nginx安装部署
510888780
nginxlinux
Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 Nginx 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本0.1.0发布于2004年10月4日。其将源代码以类BSD许可证的形式发布,因它的稳定性、丰富的功能集、示例配置文件和低系统资源
- java servelet异步处理请求
墙头上一根草
java异步返回servlet
servlet3.0以后支持异步处理请求,具体是使用AsyncContext ,包装httpservletRequest以及httpservletResponse具有异步的功能,
final AsyncContext ac = request.startAsync(request, response);
ac.s
- 我的spring学习笔记8-Spring中Bean的实例化
aijuans
Spring 3
在Spring中要实例化一个Bean有几种方法:
1、最常用的(普通方法)
<bean id="myBean" class="www.6e6.org.MyBean" />
使用这样方法,按Spring就会使用Bean的默认构造方法,也就是把没有参数的构造方法来建立Bean实例。
(有构造方法的下个文细说)
2、还
- 为Mysql创建最优的索引
annan211
mysql索引
索引对于良好的性能非常关键,尤其是当数据规模越来越大的时候,索引的对性能的影响越发重要。
索引经常会被误解甚至忽略,而且经常被糟糕的设计。
索引优化应该是对查询性能优化最有效的手段了,索引能够轻易将查询性能提高几个数量级,最优的索引会比
较好的索引性能要好2个数量级。
1 索引的类型
(1) B-Tree
不出意外,这里提到的索引都是指 B-
- 日期函数
百合不是茶
oraclesql日期函数查询
ORACLE日期时间函数大全
TO_DATE格式(以时间:2007-11-02 13:45:25为例)
Year:
yy two digits 两位年 显示值:07
yyy three digits 三位年 显示值:007
- 线程优先级
bijian1013
javathread多线程java多线程
多线程运行时需要定义线程运行的先后顺序。
线程优先级是用数字表示,数字越大线程优先级越高,取值在1到10,默认优先级为5。
实例:
package com.bijian.study;
/**
* 因为在代码段当中把线程B的优先级设置高于线程A,所以运行结果先执行线程B的run()方法后再执行线程A的run()方法
* 但在实际中,JAVA的优先级不准,强烈不建议用此方法来控制执
- 适配器模式和代理模式的区别
bijian1013
java设计模式
一.简介 适配器模式:适配器模式(英语:adapter pattern)有时候也称包装样式或者包装。将一个类的接口转接成用户所期待的。一个适配使得因接口不兼容而不能在一起工作的类工作在一起,做法是将类别自己的接口包裹在一个已存在的类中。 &nbs
- 【持久化框架MyBatis3三】MyBatis3 SQL映射配置文件
bit1129
Mybatis3
SQL映射配置文件一方面类似于Hibernate的映射配置文件,通过定义实体与关系表的列之间的对应关系。另一方面使用<select>,<insert>,<delete>,<update>元素定义增删改查的SQL语句,
这些元素包含三方面内容
1. 要执行的SQL语句
2. SQL语句的入参,比如查询条件
3. SQL语句的返回结果
- oracle大数据表复制备份个人经验
bitcarter
oracle大表备份大表数据复制
前提:
数据库仓库A(就拿oracle11g为例)中有两个用户user1和user2,现在有user1中有表ldm_table1,且表ldm_table1有数据5千万以上,ldm_table1中的数据是从其他库B(数据源)中抽取过来的,前期业务理解不够或者需求有变,数据有变动需要重新从B中抽取数据到A库表ldm_table1中。
- HTTP加速器varnish安装小记
ronin47
http varnish 加速
上午共享的那个varnish安装手册,个人看了下,有点不知所云,好吧~看来还是先安装玩玩!
苦逼公司服务器没法连外网,不能用什么wget或yum命令直接下载安装,每每看到别人博客贴出的在线安装代码时,总有一股羡慕嫉妒“恨”冒了出来。。。好吧,既然没法上外网,那只能麻烦点通过下载源码来编译安装了!
Varnish 3.0.4下载地址: http://repo.varnish-cache.org/
- java-73-输入一个字符串,输出该字符串中对称的子字符串的最大长度
bylijinnan
java
public class LongestSymmtricalLength {
/*
* Q75题目:输入一个字符串,输出该字符串中对称的子字符串的最大长度。
* 比如输入字符串“google”,由于该字符串里最长的对称子字符串是“goog”,因此输出4。
*/
public static void main(String[] args) {
Str
- 学习编程的一点感想
Cb123456
编程感想Gis
写点感想,总结一些,也顺便激励一些自己.现在就是复习阶段,也做做项目.
本专业是GIS专业,当初觉得本专业太水,靠这个会活不下去的,所以就报了培训班。学习的时候,进入状态很慢,而且当初进去的时候,已经上到Java高级阶段了,所以.....,呵呵,之后有点感觉了,不过,还是不好好写代码,还眼高手低的,有
- [能源与安全]美国与中国
comsci
能源
现在有一个局面:地球上的石油只剩下N桶,这些油只够让中国和美国这两个国家中的一个顺利过渡到宇宙时代,但是如果这两个国家为争夺这些石油而发生战争,其结果是两个国家都无法平稳过渡到宇宙时代。。。。而且在战争中,剩下的石油也会被快速消耗在战争中,结果是两败俱伤。。。
在这个大
- SEMI-JOIN执行计划突然变成HASH JOIN了 的原因分析
cwqcwqmax9
oracle
甲说:
A B两个表总数据量都很大,在百万以上。
idx1 idx2字段表示是索引字段
A B 两表上都有
col1字段表示普通字段
select xxx from A
where A.idx1 between mmm and nnn
and exists (select 1 from B where B.idx2 =
- SpringMVC-ajax返回值乱码解决方案
dashuaifu
AjaxspringMVCresponse中文乱码
SpringMVC-ajax返回值乱码解决方案
一:(自己总结,测试过可行)
ajax返回如果含有中文汉字,则使用:(如下例:)
@RequestMapping(value="/xxx.do") public @ResponseBody void getPunishReasonB
- Linux系统中查看日志的常用命令
dcj3sjt126com
OS
因为在日常的工作中,出问题的时候查看日志是每个管理员的习惯,作为初学者,为了以后的需要,我今天将下面这些查看命令共享给各位
cat
tail -f
日 志 文 件 说 明
/var/log/message 系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一
/var/log/secure 与安全相关的日志信息
/var/log/maillog 与邮件相关的日志信
- [应用结构]应用
dcj3sjt126com
PHPyii2
应用主体
应用主体是管理 Yii 应用系统整体结构和生命周期的对象。 每个Yii应用系统只能包含一个应用主体,应用主体在 入口脚本中创建并能通过表达式 \Yii::$app 全局范围内访问。
补充: 当我们说"一个应用",它可能是一个应用主体对象,也可能是一个应用系统,是根据上下文来决定[译:中文为避免歧义,Application翻译为应
- assertThat用法
eksliang
JUnitassertThat
junit4.0 assertThat用法
一般匹配符1、assertThat( testedNumber, allOf( greaterThan(8), lessThan(16) ) );
注释: allOf匹配符表明如果接下来的所有条件必须都成立测试才通过,相当于“与”(&&)
2、assertThat( testedNumber, anyOf( g
- android点滴2
gundumw100
应用服务器android网络应用OSHTC
如何让Drawable绕着中心旋转?
Animation a = new RotateAnimation(0.0f, 360.0f,
Animation.RELATIVE_TO_SELF, 0.5f, Animation.RELATIVE_TO_SELF,0.5f);
a.setRepeatCount(-1);
a.setDuration(1000);
如何控制Andro
- 超简洁的CSS下拉菜单
ini
htmlWeb工作html5css
效果体验:http://hovertree.com/texiao/css/3.htmHTML文件:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>简洁的HTML+CSS下拉菜单-HoverTree</title>
- kafka consumer防止数据丢失
kane_xie
kafkaoffset commit
kafka最初是被LinkedIn设计用来处理log的分布式消息系统,因此它的着眼点不在数据的安全性(log偶尔丢几条无所谓),换句话说kafka并不能完全保证数据不丢失。
尽管kafka官网声称能够保证at-least-once,但如果consumer进程数小于partition_num,这个结论不一定成立。
考虑这样一个case,partiton_num=2
- @Repository、@Service、@Controller 和 @Component
mhtbbx
DAOspringbeanprototype
@Repository、@Service、@Controller 和 @Component 将类标识为Bean
Spring 自 2.0 版本开始,陆续引入了一些注解用于简化 Spring 的开发。@Repository注解便属于最先引入的一批,它用于将数据访问层 (DAO 层 ) 的类标识为 Spring Bean。具体只需将该注解标注在 DAO类上即可。同时,为了让 Spring 能够扫描类
- java 多线程高并发读写控制 误区
qifeifei
java thread
先看一下下面的错误代码,对写加了synchronized控制,保证了写的安全,但是问题在哪里呢?
public class testTh7 {
private String data;
public String read(){
System.out.println(Thread.currentThread().getName() + "read data "
- mongodb replica set(副本集)设置步骤
tcrct
javamongodb
网上已经有一大堆的设置步骤的了,根据我遇到的问题,整理一下,如下:
首先先去下载一个mongodb最新版,目前最新版应该是2.6
cd /usr/local/bin
wget http://fastdl.mongodb.org/linux/mongodb-linux-x86_64-2.6.0.tgz
tar -zxvf mongodb-linux-x86_64-2.6.0.t
- rust学习笔记
wudixiaotie
学习笔记
1.rust里绑定变量是let,默认绑定了的变量是不可更改的,所以如果想让变量可变就要加上mut。
let x = 1; let mut y = 2;
2.match 相当于erlang中的case,但是case的每一项后都是分号,但是rust的match却是逗号。
3.match 的每一项最后都要加逗号,但是最后一项不加也不会报错,所有结尾加逗号的用法都是类似。
4.每个语句结尾都要加分