本文已同步至微信公众号【不能止步】,链接为Python类型提示方法速查表,欢迎订阅。
本文档是一个速查表,展示了如何在 Python 中为各种常见类型使用类型注释的方法。
# This is how you declare the type of a variable
age: int = 1
# You don't need to initialize a variable to annotate it
a: int # Ok (no value at runtime until assigned)
# Doing so is useful in conditional branches
child: bool
if age < 18:
child = True
else:
child = False
# For most types, just use the name of the type.
x: int = 1
x: float = 1.0
x: bool = True
x: str = "test"
x: bytes = b"test"
# For collections on Python 3.9+, the type of the collection item is in brackets
x: list[int] = [1]
x: set[int] = {6, 7}
# For mappings, we need the types of both keys and values
x: dict[str, float] = {"field": 2.0} # Python 3.9+
# For tuples of fixed size, we specify the types of all the elements
x: tuple[int, str, float] = (3, "yes", 7.5) # Python 3.9+
# For tuples of variable size, we use one type and ellipsis
x: tuple[int, ...] = (1, 2, 3) # Python 3.9+
# On Python 3.8 and earlier, the name of the collection type is
# capitalized, and the type is imported from the 'typing' module
from typing import List, Set, Dict, Tuple
x: List[int] = [1]
x: Set[int] = {6, 7}
x: Dict[str, float] = {"field": 2.0}
x: Tuple[int, str, float] = (3, "yes", 7.5)
x: Tuple[int, ...] = (1, 2, 3)
from typing import Union, Optional
# On Python 3.10+, use the | operator when something could be one of a few types
x: list[int | str] = [3, 5, "test", "fun"] # Python 3.10+
# On earlier versions, use Union
x: list[Union[int, str]] = [3, 5, "test", "fun"]
# Use Optional[X] for a value that could be None
# Optional[X] is the same as X | None or Union[X, None]
x: Optional[str] = "something" if some_condition() else None
# Mypy understands a value can't be None in an if-statement
if x is not None:
print(x.upper())
# If a value can never be None due to some invariants, use an assert
assert x is not None
print(x.upper())
from typing import Callable, Iterator, Union, Optional
# This is how you annotate a function definition
def stringify(num: int) -> str:
return str(num)
# And here's how you specify multiple arguments
def plus(num1: int, num2: int) -> int:
return num1 + num2
# If a function does not return a value, use None as the return type
# Default value for an argument goes after the type annotation
def show(value: str, excitement: int = 10) -> None:
print(value + "!" * excitement)
# Note that arguments without a type are dynamically typed (treated as Any)
# and that functions without any annotations not checked
def untyped(x):
x.anything() + 1 + "string" # no errors
# This is how you annotate a callable (function) value
x: Callable[[int, float], float] = f
def register(callback: Callable[[str], int]) -> None: ...
# A generator function that yields ints is secretly just a function that
# returns an iterator of ints, so that's how we annotate it
def gen(n: int) -> Iterator[int]:
i = 0
while i < n:
yield i
i += 1
# You can of course split a function annotation over multiple lines
def send_email(address: Union[str, list[str]],
sender: str,
cc: Optional[list[str]],
bcc: Optional[list[str]],
subject: str = '',
body: Optional[list[str]] = None
) -> bool:
...
# Positional-only arguments can also be marked by using a name starting with
# two underscores
def quux(__x: int, y: int) -> None:
pass
quux(3, y=5) # Ok
quux(x=3, y=5) # error: Unexpected keyword argument "x" for "quux"
# This says each positional arg and each keyword arg is a "str"
def call(self, *args: str, **kwargs: str) -> str:
reveal_type(args) # Revealed type is "tuple[str, ...]"
reveal_type(kwargs) # Revealed type is "dict[str, str]"
request = make_request(*args, **kwargs)
return self.do_api_query(request)
class BankAccount:
# The "__init__" method doesn't return anything, so it gets return
# type "None" just like any other method that doesn't return anything
def __init__(self, account_name: str, initial_balance: int = 0) -> None:
# can infer the correct types for these instance variables
# based on the types of the parameters.
self.account_name = account_name
self.balance = initial_balance
# For instance methods, omit type for "self"
def deposit(self, amount: int) -> None:
self.balance += amount
def withdraw(self, amount: int) -> None:
self.balance -= amount
# User-defined classes are valid as types in annotations
account: BankAccount = BankAccount("Alice", 400)
def transfer(src: BankAccount, dst: BankAccount, amount: int) -> None:
src.withdraw(amount)
dst.deposit(amount)
# Functions that accept BankAccount also accept any subclass of BankAccount!
class AuditedBankAccount(BankAccount):
# You can optionally declare instance variables in the class body
audit_log: list[str]
# This is an instance variable with a default value
auditor_name: str = "The Spanish Inquisition"
def __init__(self, account_name: str, initial_balance: int = 0) -> None:
super().__init__(account_name, initial_balance)
self.audit_log: list[str] = []
def deposit(self, amount: int) -> None:
self.audit_log.append(f"Deposited {amount}")
self.balance += amount
def withdraw(self, amount: int) -> None:
self.audit_log.append(f"Withdrew {amount}")
self.balance -= amount
audited = AuditedBankAccount("Bob", 300)
transfer(audited, account, 100) # type checks!
# You can use the ClassVar annotation to declare a class variable
class Car:
seats: ClassVar[int] = 4
passengers: ClassVar[list[str]]