std::thread是C++11接口,pthread是C++98接口且只支持Linux。
示例:
pthread_create(&thread, &attr, f, static_cast(&args));
// 其中f是函数,args是所有参数打包成的结构体。因为pthread_create的第四个参数类型是void*,所以需要强制转型
//pthread_create只接受void *f(void *)这样的函数签名
// 假设buy是Consumer的一个可调用的成员函数
// Clara会去执行Consumer.buy(phone)
Consumer Clara;
std::thread action(buy, Clara, phone);
pthread_mutex_lock(&mutex)
{
std::lock_guard guard(mutex); // 加锁
...
// 自动解锁
}
std::condition_variable condvar;
consumer:
std::unique_lock ulock(mutex);
condvar.wait(ulock, []{ return msgQueue.size() > 0;});
producer:
condvar.notify_all();
C++11增加future和atomic
#include
#include
#include
future f = async(launch::async, {
std::chrono::milliseconds dura(2000);
std::this_thread::sleep_for(dura);
return 0;
});
atomic位于头文件atomic下,有些时候你也可以用它来替换掉Lock(假如整个race condition中只有单个变量)。
std::thread对比于pthread的优缺点:
优点:
1. 简单,易用
2. 跨平台,pthread只能用在POSIX系统上(其他系统有其独立的thread实现)
3. 提供了更多高级功能,比如future
4. 更加C++(跟匿名函数,std::bind,RAII等C++特性更好的集成)
缺点:
1. 没有RWlock。有一个类似的shared_mutex,不过它属于C++14,你的编译器很有可能不支持。
2. 操作线程和Mutex等的API较少。毕竟为了跨平台,只能选取各原生实现的子集。如果你需要设置某些属性,需要通过API调用返回原生平台上的对应对象,再对返回的对象进行操作。
pthread版本
#include
#include
#include
#include
// 注意pthread_*函数返回的异常值
pthread_mutex_t mutex;
pthread_cond_t condvar;
std::queue msgQueue;
struct Produce_range {
int start;
int end;
};
void *producer(void *args)
{
int start = static_cast(args)->start;
int end = static_cast(args)->end;
for (int x = start; x < end; x++) {
usleep(200 * 1000);
pthread_mutex_lock(&mutex);
msgQueue.push(x);
pthread_mutex_unlock(&mutex);
pthread_cond_signal(&condvar);
printf("Produce message %d\n", x);
}
pthread_exit((void *)0);
return NULL;
}
void *consumer(void *args)
{
int demand = *static_cast(args);
while (true) {
pthread_mutex_lock(&mutex);
while (msgQueue.size() <= 0) {
pthread_cond_wait(&condvar, &mutex);
}
if (msgQueue.size() > 0) {
printf("Consume message %d\n", msgQueue.front());
msgQueue.pop();
--demand;
}
pthread_mutex_unlock(&mutex);
if (!demand) break;
}
pthread_exit((void *)0);
return NULL;
}
int main()
{
pthread_attr_t attr;
pthread_attr_init(&attr);
pthread_mutex_init(&mutex, NULL);
pthread_cond_init(&condvar, NULL);
pthread_t producer1, producer2, producer3, consumer1, consumer2;
Produce_range range1 = {0, 10};
pthread_create(&producer1, &attr, producer, static_cast(&range1));
Produce_range range2 = {range1.end, range1.end + 10};
pthread_create(&producer2, &attr, producer, static_cast(&range2));
Produce_range range3 = {range2.end, range2.end + 10};
pthread_create(&producer3, &attr, producer, static_cast(&range3));
int consume_demand1 = 20;
int consume_demand2 = 10;
pthread_create(&consumer1, &attr, consumer,
static_cast(&consume_demand1));
pthread_create(&consumer2, &attr, consumer,
static_cast(&consume_demand2));
pthread_join(producer1, NULL);
pthread_join(producer2, NULL);
pthread_join(producer3, NULL);
pthread_join(consumer1, NULL);
pthread_join(consumer2, NULL);
}
std::thread版本
#include
#include
#include
#include
#include
// 注意某些调用可能会抛出std::system_error
std::mutex mutex;
std::condition_variable condvar;
std::queue msgQueue;
void producer(int start, int end)
{
for (int x = start; x < end; x++) {
std::this_thread::sleep_for(std::chrono::milliseconds(200));
{
std::lock_guard guard(mutex);
msgQueue.push(x);
}
printf("Produce message %d\n", x);
condvar.notify_all();
}
}
void consumer(int demand)
{
while (true) {
std::unique_lock ulock(mutex);
condvar.wait(ulock, []{ return msgQueue.size() > 0;});
// wait的第二个参数使得显式的double check不再必要
printf("Consume message %d\n", msgQueue.front());
msgQueue.pop();
--demand;
if (!demand) break;
}
}
int main()
{
std::thread producer1(producer, 0, 10);
std::thread producer2(producer, 10, 20);
std::thread producer3(producer, 20, 30);
std::thread consumer1(consumer, 20);
std::thread consumer2(consumer, 10);
producer1.join();
producer2.join();
producer3.join();
consumer1.join();
consumer2.join();
}