代码随想录算法训练营第四十八天| 198 打家劫舍 213 打家劫舍II 337 打家劫舍III

代码随想录算法训练营第四十八天| 198 打家劫舍 213 打家劫舍II 337 打家劫舍III

LeetCode 198 打家劫舍

题目: 198.打家劫舍

动规五部曲:

  • 确定dp数组以及下标的含义

dp[i]:考虑下标i(包括i)以内的房屋,最多可以偷窃的金额为dp[i]

  • 确定递推公式

决定dp[i]的因素就是第i房间偷还是不偷。

dp[i] = max(dp[i - 2] + nums[i], dp[i - 1])

  • dp数组如何初始化

dp[0] 是 nums[0],dp[1]是nums[0]和nums[1]的最大值

即:dp[1] = max(nums[0], nums[1])

vector<int> dp(nums.size());
dp[0] = nums[0];
dp[1] = max(nums[0], nums[1]);
  • 确定遍历顺序

dp[i] 是根据dp[i - 2] 和 dp[i - 1] 推导出来的,从前到后遍历!

for (int i = 2; i < nums.size(); i++) {
    dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
}
  • 举例来推导dp数组

整体代码:

class Solution {
public:
    int rob(vector<int>& nums) {
        if (nums.size() == 0) return 0;
        if (nums.size() == 1) return nums[0];
        vector<int> dp(nums.size());
        dp[0] = nums[0];
        dp[1] = max(nums[0], nums[1]);
        for (int i = 2; i < nums.size(); i++) {
            dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
        }
        return dp[nums.size() - 1];
    }
};

LeetCode 213 打家劫舍II

题目: 213.打家劫舍II

此题与上题区别是有成环的情况,主要分为:

  • 情况一:考虑不包含首尾元素
  • 情况二:考虑包含首元素,不包含尾元素
  • 情况三:考虑包含尾元素,不包含首元素

整体代码:

class Solution {
public:
    int rob(vector<int>& nums) {
        if (nums.size() == 0) return 0;
        if (nums.size() == 1) return nums[0];
        int result1 = robRange(nums, 0, nums.size() - 2); // 情况二
        int result2 = robRange(nums, 1, nums.size() - 1); // 情况三
        return max(result1, result2);
    }
    // 198.打家劫舍的逻辑
    int robRange(vector<int>& nums, int start, int end) {
        if (end == start) return nums[start];
        vector<int> dp(nums.size());
        dp[start] = nums[start];
        dp[start + 1] = max(nums[start], nums[start + 1]);
        for (int i = start + 2; i <= end; i++) {
            dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
        }
        return dp[end];
    }
};

LeetCode 337 打家劫舍III

题目: 337.打家劫舍III

本题换成了树,首先想到遍历方式

本题一定要后序遍历,需要通过递归函数的返回值来做下一步计算

  • 确定递归函数的参数和返回值
vector<int> robTree(TreeNode* cur) 

本题dp数组是一个长度为2的数组

  • 确定终止条件

在遍历的过程中,如果遇到空节点的话,很明显,无论偷还是不偷都是0,返回

if (cur == NULL) return vector<int>{0, 0};
  • 确定遍历顺序

使用后序遍历。通过递归函数的返回值来做下一步计算。

通过递归左节点,得到左节点偷与不偷的金钱。

通过递归右节点,得到右节点偷与不偷的金钱。

// 下标0:不偷,下标1:偷
vector<int> left = robTree(cur->left); // 左
vector<int> right = robTree(cur->right); // 右
// 中
  • 确定单层递归的逻辑

如果偷当前节点,左右孩子不能偷,val1 = cur->val + left[0] + right[0];

如果不偷当前节点,左右孩子可以偷,选一个最大的:val2 = max(left[0], left[1]) + max(right[0], right[1]);

当前节点的状态就是{val2, val1}; 即:{不偷当前节点得到的最大金钱,偷当前节点得到的最大金钱}

vector<int> left = robTree(cur->left); // 左
vector<int> right = robTree(cur->right); // 右

// 偷cur
int val1 = cur->val + left[0] + right[0];
// 不偷cur
int val2 = max(left[0], left[1]) + max(right[0], right[1]);
return {val2, val1};
  • 举例推导dp数组

整体代码:

class Solution {
public:
    int rob(TreeNode* root) {
        vector<int> result = robTree(root);
        return max(result[0], result[1]);
    }
    // 长度为2的数组,0:不偷,1:偷
    vector<int> robTree(TreeNode* cur) {
        if (cur == NULL) return vector<int>{0, 0};
        vector<int> left = robTree(cur->left);
        vector<int> right = robTree(cur->right);
        // 偷cur,那么就不能偷左右节点。
        int val1 = cur->val + left[0] + right[0];
        // 不偷cur,那么可以偷也可以不偷左右节点,则取较大的情况
        int val2 = max(left[0], left[1]) + max(right[0], right[1]);
        return {val2, val1};
    }
};

你可能感兴趣的:(代码随想录每日打卡,算法,leetcode,数据结构,动态规划)