Permutation integer encoding 序列编码是整数编码的一种,可以用于解决TSP(旅行商问题),Graph Coloring Problem(图上色问题),Quadratic Assignment Problem(二次分配问题,与TSP问题相似),N-Queens Problem。
针对Permutation encoding根据交叉的方式不同可以分为以下几种类型:
一、Position Based 基于位置的交叉方法
PMX (Partially Mapped Crossover) 1985 详解PMX,two-point两个切点间的连续部分保留,其他部分用另一个父代染色体填充,已经填充的基因找到与之映射的基因填充。
PMX的变体Uniform Partially Mapped Crossover (UPMX) 1996,随机的选择交换的位置而不是连续的cut points 详解UPMX [1]
二、Edge Based基于边的交叉方法
三、Order Based 基于顺序的交叉方法
Order Based 交叉方法的子代继承了某个父代的基因顺序
第一种sort
swap-moves-based deterministic and non-deterministic selection sort crossover (SS1X, SSUX)
adjacent swap-move-based deterministic and non-deterministic bubble sort crossover (BS1X, BSUX)
the insertion move based deterministic and non-deterministic insertion sort (IS1X, ISUX)
the sorting by reversals crossover (SBRX)
第二种 merge merge 交叉算法详解
第三种 Relative Order
Uniform Order-Based Crossover (UOBX) 1991:UOBX在解决GCP问题中善于保持相对位置和相对顺序
POP,POP1,POP2 2006 详解POP
Order-Based Crossover (OBX) 1990 详见 OBX,注意与PBX区分详解PBX
第四种 Absolute Order
第五种 Adjacency
四、Subset Based基于子集的交叉方法
五、Cut and Splice 剪切和拼接
六、Swap
七、Graph Partition
八、Distance Based
[1]Rakesh Kumar, Girdhar Gopal, and Rajesh Kumar. 2013. Novel crossover operator for genetic algorithm for permutation problems. International Journal of Soft Computing and Engineering 3, 2 (May 2013), 252–258.
[2]Kusum Deep and Hadush Mebrahtu. 2011. New variations of order crossover for travelling salesman problem. International Journal of Combinatorial Optimization Problems and Informatics 2, 1, 2–13.
[3]V. A. Cicirello. Non-wrapping order crossover : An order preserving crossover operator that respects absolute position. GECCO, pages 1125–1131, 2006.
[4]Fanchen Su, Fuxi Zhu, Zhiyi Yin, Haitao Yao, Qingping Wang, and Wenyong Dong. 2009. New crossover operator of genetic algorithms for the TSP. In Proceedings of IEEE International Joint Conference on Computational Sciences and Optimization. 666–669.
[5]Muhlenbein H. Gorges-Schleuter M. Kramer O. “Evolution algorithms in Combinatorial Optimization”, Parallel Computing 7, 1988, pp. 65-85
[6]Rhydian Lewis and Ben Paechter. 2004. New crossover operators for timetabling with evolutionary algorithms. In Proceedings of 5th International Conference on Recent Advances in Soft Computing (RASC’04). 189–195.
[7]Alfonsas Misevicius and Bronislovas Kilda. 2005. Comparison of crossover operators for the quadratic assignment problem. Information Technology and Control 34, 2, 109–119.
[8]Darrell Whitley, Doug Hains, and Adele Howe. 2010. A hybrid genetic algorithm for the traveling salesman problem using generalized partition crossover. In Parallel Problem Solving from Nature (PPSN’10) XI. 566–575.
[9]Whitley, D., Hains, D., Howe, A.: Tunneling between optima: partition crossover for the traveling salesman problem. In: Proceedings of the 11th Annual conference on Genetic and evolutionary computation, ACM (2009) 915–922