导读:狄拉克年把相对论引进了量子力学,建立了相对论形式的薛定谔方程。这充分说明相对论在量子力学中的作用。狄拉克的工作,也启发了很多后来的研究者。看问题的方式,永远不要单一。
狄拉克第一次受教育是在主教路小学,然后在男子商人合营技术学院(后来的考瑟姆学校)就读。他的父亲在那里是一位法语老师。这所学校是布里斯托大学内的附属机构,他们共享场地和人员。这所大学强调技术课程,如瓦工、制鞋、金属工作和现代语言。在当时仍然主要致力于经典文学的英国中等教育里,这是一个不寻常的安排。后来狄拉克曾对这些安排表示感激。
之后狄拉克在布里斯托大学工程学院学习电机工程。尽管最喜欢的科目是数学,狄拉克后来声称工程教育对他影响深远:
“原先,我只对完全正确的方程感兴趣。然而我所接受的工程训练教导我要容许近似,有时候我能够从这些理论中发现惊人的美,即使它是以近似为基础...如果没有这些来自工程学的训练,我或许无法在后来的研究作出任何成果...我持续在之后的工作运用这些不完全严谨的工程数学,我相信你们可以从我后来的文章中看出来...那些要求所有计算推导上完全精确的数学家很难在物理上走得很远。”
就在1921年获得学位的前不久,他参加了剑桥大学圣约翰学院的入学测验。他通过入学考试并获得一笔70英镑的奖学金,然而这不足以支付在剑桥就读及生活所需的庞大金额。尽管以第一级荣誉工程学士的成绩毕业,在当时英国战后经济衰退的环境下仍无法找到工程师的工作。因此,他选择接受免学费攻读布里斯托大学数学学士学位的机会。由于已完成的工程学位,他被允许抵免第一年的课程。
1923年狄拉克再度以第一级荣誉的成绩毕业并获得140英镑的奖学金。加上来自约翰学院的70英镑,这笔钱足够他在剑桥居住与求学。
原先,狄拉克希望研究一直以来感兴趣的相对论,然而在拉尔夫·福勒的指导下,狄拉克开始接触原子理论。福勒将原子理论中最新的概念如尼尔斯·玻尔等人的理论介绍给了狄拉克,对此狄拉克曾回忆到:
“还记得我头一回看到玻尔的理论,我相当惊讶...让人惊奇的是在特定的条件下,我们居然能将牛顿定律用在原子里的电子。第一个条件是忽略电子辐射,第二则是放入量子条件。我仍记得很清楚,玻尔的理论当时给了我多大的震撼。我相信在发展量子力学上,玻尔引入的这个概念是最大的突破。”
之后狄拉克也尝试着将玻尔的理论作延伸。1925年维尔纳·海森堡提出了着眼于可观察的物理量的理论,当中牵涉到矩阵相乘的不可交换性。狄拉克起初对此并不特别欣赏,然而约莫两个星期之后,他意识到当中的不可交换性带有重要的意义,并且发现了经典力学中泊松括号与海森堡提出的矩阵力学规则的相似之处。基于这项发现,他得出更明确的量子化规则(即正则量子化)。这份名为《量子力学》的论文发表于1926年,狄拉克也凭借这项工作获得博士学位。
同时埃尔温·薛定谔以物质波的波方程提出了自己的量子理论。狄拉克很快地发现到海森堡与薛定谔两人的理论是彼此互补的,并开始研究起薛定谔的波动力学。
1926年9月,在福勒的建议之下,狄拉克前往位于哥本哈根的尼尔斯·玻尔研究所作了一段时间的研究。在哥本哈根的这段期间,狄拉克持续量子力学的研究,发展出了涵盖波动力学与矩阵力学的广义理论。这个方法与经典哈密顿力学理正则变换相类似,允许使用不同组的变量基底。此外,为了处理连续的变量,狄拉克引入了新的数学工具—狄拉克δ函数。
狄拉克也开始研究辐射理论。在他的文章“吸收和放出辐射的量子理论”中,他运用二次量子化的技巧将波函数量子化,进一步将光子辐射与玻色-爱因斯坦统计连结起来。在这个方法中,粒子集合的量子态是以其粒子在各能态中的分布来表示,并以粒子的创造与消灭来对量子态作改变。狄拉克展示了两种方法是等价的,将电磁场以光子处理或将场作量子化。事实上,这个工作引发了新的物理课题—量子场论,而二次量子化则成为后来量子电动力学的基础。
1927年2月狄拉克来到哥廷根,在此他待了几个月并结识了赫尔曼·外尔、马克斯·玻恩、罗伯特·奥本海默等人。
狄拉克发展了量子力学,提出了著名的狄拉克方程,并且从理论上预言了正电子的存在。
狄拉克原来从事相对论动力学的研究,自从1925年海森伯访问剑桥大学以后,狄拉克深受影响,把精力转向量子力学的研究。
狄拉克在讲授《量子力学》1928年他把相对论引进了量子力学,建立了相对论形式的薛定谔方程,也就是著名的狄拉克方程。这一方程具有两个特点:一是满足相对论的所有要求,适用于运动速度无论多快电子;二是它能自动地导出电子有自旋的结论。这一方程的解很特别,既包括正能态,也包括负能态。
狄拉克由此做出了存在正电子的预言,认为正电子是电子的一个镜像,它们具有严格相同的质量,但是电荷符号相反。狄拉克根据这个图象,还预料存在着一个电子和一个正电子互相湮灭放出光子的过程;相反,这个过程的逆过程,就是一个光子湮灭产生出一个电子和一个正电子的过程也是可能存在的。1932年,美国物理学家安德森(1923-)在研究宇宙射线簇射中高能电子径迹的时候,奇怪地发现强磁场中有一半电子向一个方向偏转,另一半向相反方向偏转,经过仔细辨认,这就是狄拉克预言的正电子。后来很快又发现了γ射线产生电子对,正、负电子碰撞“湮灭”成光子等现象,全面印证了狄拉克预言的正确性。狄拉克的工作,开创了反粒子和反物质的理论和实验研究。
狄拉克是量子辐射理论的创始人,曾经和费米各自独立发现了费米-狄拉克统计法。狄拉克还在美国佛罗里达州立大学发表过大量有关宇宙学方面的论文,推动宇宙学研究的发展。特别值得一提的是,狄拉克早在本世纪三十年代,就从理论上提出可能存在磁单极的预言。近代物理学来有关磁单极的理论研究和实验探测取得了迅速发展。1982年国外已有报道,宣称有人发现了磁单极存在的证据。当然,假如真能从实验上证实磁单极存在,一定会引起物理理论的深刻变化。
总结起来,狄拉克对物理学的主要贡献是:给出描述相对论性费米粒子的量子力学方程(狄拉克方程),给出反粒子解;预言磁单极;费米—狄拉克统计。另外在量子场论尤其是量子电动力学方面也作出了奠基性的工作。在引力论和引力量子化方面也有杰出的工作。
狄拉克方程:1928年英国物理学家狄拉克提出的方程。利用这个方程研究氢原子能级分布时,考虑有自旋角动量的电子作高速运动时的相对论性效应,给出了氢原子能级的精细结构,与实验符合得很好。从这个方程还可自动导出电子的自旋量子数应为1/2,以及电子自旋磁矩与自旋角动量之比的朗德g因子为轨道角动量情形时朗德g因子的2倍。电子的这些性质都是过去从分析实验结果中总结出来的,并没有理论的来源和解释。狄拉克方程却自动地导出这些重要基本性质,是理论上的重大进展。
灵遁者国学智慧整理提供。