Python实现排序算法(选择、冒泡和归并)和查找算法(顺序和折半)

Python实现排序算法(选择、冒泡和归并)和查找算法(顺序和折半)

简单选择排序
概念:
最好情况下,即待排序记录初始状态就已经是升序排列了,则不需要移动记录。
最坏情况下,即待排序记录初始状态是按第一条记录最大,之后的记录从小到大顺序排列,则需要移动记录的次数最多为3(n-1)。简单选择排序过程中需要进行的比较次数与初始状态下待排序的记录序列的排列情况无关。当i=1时,需进行n-1次比较;当i=2时,需进行n-2次比较;依次类推,共需要进行的比较次数是(n-1)+(n-2)+…+2+1=n(n-1)/2,即进行比较操作的时间复杂度为O(n^2),进行移动操作的时间复杂度为O(n)。
简单选择排序是不稳定排序。
代码如下:

def select_sort(items, comp=lambda x, y: x < y):
      """简单选择排序"""
      items = items[:]
      for i in range(len(items) - 1):
          min_index = i
          for j in range(i + 1, len(items)):
              if comp(items[j], items[min_index]):
                  min_index = j
          items[i], items[min_index] = items[min_index], items[i]
      return items

冒泡排序
概念:
冒泡排序(Bubble Sort),是一种计算机科学领域的较简单的排序算法。
它重复地走访过要排序的元素列,依次比较两个相邻的元素,如果顺序(如从大到小、首字母从Z到A)错误就把他们交换过来。走访元素的工作是重复地进行,直到没有相邻元素需要交换,也就是说该元素列已经排序完成。
这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端(升序或降序排列),就如同碳酸饮料中二氧化碳的气泡最终会上浮到顶端一样,故名“冒泡排序”。
代码如下:

def bubble_sort(items, comp=lambda x, y: x > y):
      """冒泡排序"""
      items = items[:]
      for i in range(len(items) - 1):
          swapped = False
          for j in range(len(items) - 1 - i):
              if comp(items[j], items[j + 1]):
                  items[j], items[j + 1] = items[j + 1], items[j]
                  swapped = True
          if not swapped:
              break
      return items

搅拌排序(冒泡排序升级版)
概念:
搅拌排序又称双向冒泡排序、鸡尾酒搅拌排序、鸡尾酒排序、涟漪排序、来回排序或快乐小时排序, 是冒泡排序的一种变形。该算法与冒泡排序的不同处在于排序时是以双向在序列中进行排序。
原理:
使用鸡尾酒排序为一列数字进行排序的过程可以通过形象的展示出来:
数组中的数字本是无规律的排放,先找到最小的数字,把他放到第一位,然后找到最大的数字放到最后一位。然后再找到第二小的数字放到第二位,再找到第二大的数字放到倒数第二位。以此类推,直到完成排序。
代码如下:

def bubble_sort(items, comp=lambda x, y: x > y):
      """搅拌排序(冒泡排序升级版)"""
      items = items[:]
      for i in range(len(items) - 1):
          swapped = False
          for j in range(len(items) - 1 - i):
              if comp(items[j], items[j + 1]):
                  items[j], items[j + 1] = items[j + 1], items[j]
                  swapped = True
          if swapped:
              swapped = False
              for j in range(len(items) - 2 - i, i, -1):
                  if comp(items[j - 1], items[j]):
                      items[j], items[j - 1] = items[j - 1], items[j]
                      swapped = True
          if not swapped:
              break
      return items

归并排序
概念:
归并排序是建立在归并操作上的一种有效,稳定的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。
代码如下:

def merge(items1, items2, comp=lambda x, y: x < y):
      """合并(将两个有序的列表合并成一个有序的列表)"""
      items = []
      index1, index2 = 0, 0
      while index1 < len(items1) and index2 < len(items2):
          if comp(items1[index1], items2[index2]):
              items.append(items1[index1])
              index1 += 1
          else:
              items.append(items2[index2])
              index2 += 1
      items += items1[index1:]
      items += items2[index2:]
      return items
  
  
  def merge_sort(items, comp=lambda x, y: x < y):
      return _merge_sort(list(items), comp)
  
  
  def _merge_sort(items, comp):
      """归并排序"""
      if len(items) < 2:
          return items
      mid = len(items) // 2
      left = _merge_sort(items[:mid], comp)
      right = _merge_sort(items[mid:], comp)
      return merge(left, right, comp)

顺序查找
概念:
顺序查找是按照序列原有顺序对数组进行遍历比较查询的基本查找算法。
原理:
对于任意一个序列以及一个给定的元素,将给定元素与序列中元素依次比较,直到找出与给定关键字相同的元素,或者将序列中的元素与其都比较完为止。
代码如下:

 def seq_search(items, key):
      """顺序查找"""
      for index, item in enumerate(items):
          if item == key:
              return index
      return -1

折半查找
概念:
折半查找(英语:half-interval search),也称二分查找(英语:binary search)、对数查找(英语:logarithmic search),是一种在有序数组中查找某一特定元素的查找算法。
查找过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜索过程结束;如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。如果在某一步骤数组为空,则代表找不到。这种搜索算法每一次比较都使搜索范围缩小一半。
代码如下:

 def bin_search(items, key):
      """折半查找"""
      start, end = 0, len(items) - 1
      while start <= end:
          mid = (start + end) // 2
          if key > items[mid]:
              start = mid + 1
          elif key < items[mid]:
              end = mid - 1
          else:
              return mid
      return -1

你可能感兴趣的:(算法,排序算法,python)