O_ASE --- 标志域外路由信息 --- 因为域外的路由信息不可控性较强,所以,信任程度较低,我们将其优先级设置为150。
LSA --- 链路状态通告 --- OSPF协议在不同网络环境下产生的用于携带和传递不同的信息。
LSDB --- 链路状态数据库
SPF --- 最短路径优先算法
Type --- LSA的类型,OSPFV2协议中,需要掌握的LSA类型一共有6种
LinkState ID --- 链路状态标识符 --- 主要用于标记一条LSA信息,可以理解为是LSA信息的名字。
AdvRouter --- 通告路由器 --- 通告LSA信息的设备的RID。
以上三个参数被称为LSA的三元组 --- 这三个参数可以唯一的标识出来一条LSA信息。
LSA头部内容
Type : Router Ls id : 4.4.4.4 Adv rtr : 4.4.4.4
LS AGE --- LSA的老化时间 --- 当LSA被始发路由器产生时置为0,之后,该LSA在网络中传
递,老化时间也将累加。 --- 1800S --- 为了防止老化时间无限制增长,我们设置了最大老化时间 --- MAXAGE -- 3600S。如果一条LSA信息的老化时间达到3600S,则将判定其失效,将该LSA信息从本地的LSDB中删除。
Len 字节长度
SEQ --- 序列号 --- 32位二进制构成,用8位16进制表示 --- 一台路由器每发送同一条LSA信息都会携带一个序列号,并且序列号逐次加1,用来标识LSA的新旧关系。
直线型序列空间 --- 从最小到最大,逐次加1,其优点时新旧关系容易比较,而缺点是序列号空间有限,当序列号空间饱和后,将无法比较新旧关系。
循环型序列空间 --- 序列号将循环使用,其问题在于一旦序列号差值过大,新旧关系将难以比较。
棒棒糖型序列空间 --- OSPF采用的就是这种序列空间,但是,为了避免循环部分出现循
环型序列空间的问题,所以,OSPF的序列号将不进入循环部分,其取值范围为
0X80000001 - 0X7FFFFFFE。
当一条LSA的序列号达到最大值时,则发出设备将会把该LSA的老化时间同时置为
3600S(最大老化时间),之后,接受的设备将根据序列号判定为最新的LSA,刷新掉本地已有的同一条LSA信息,之后,由于其老化时间达到最大老化时间,则将该LSA信息从本地的LSDB中删除。同时,发出设备会再发送一遍该LSA信息,将其中序列号置为
0X80000001,之后,接受设备将该LSA判定为最新的LSA信息进行接收。
Chksum --- 校验和 --- 确保数据完整性。校验和也将参与LSA的新旧比较,当两条LSA信息,三元组相同,且序列号相同时,则我们将通过校验和来进行新旧判定,校验和大的被认定为新。
类型 |
LS ID |
通告路由器 |
传播范围 |
携带信息 |
Type-1 Router |
通告者的RID |
区域内所有运行OSPF协议的路由器的RID |
单区域 |
本地接口直连拓扑信息 |
Type-2 Network |
DR接口的IP地址 |
单个MA网络中的DR所在的路由器的RID |
单区域 |
单个MA网络的补充信息 |
TYPE-1 :网络中,所有设备都需要发送且只发送一条1类LSA。1类LSA的LS ID就是通告者的
RID。
LINK --- 用来描述接口的连接情况。一个接口可以使用一条或者多条LINK进行描述。
Ptp 点到点链接 路由器之间串线连接
TransNet-----传输网络 MA网 路由器之间网线连接
stubNet----末梢网络 末梢没有路由器,路由器直链了用户端没有路由器与之建立ospf连接
Virtual------虚链路
TYPE-2 LSA --- 在MA网络中,仅靠1类LSA无法将所有信息描述完整,所以,需要使用二类LSA 进行补充。二类LSA一个MA网络中只需要发送1条。
[r1]display ospf lsdb
[r1]display ospf lsdb router 2.2.2.2
类型 |
LS ID |
通告路由器 |
传播范围 |
携带信息 |
Type-1 LSA Router |
通告者的RID |
区域内所有运行OSPF协议的路由器的RID |
单区域 |
本地接口直连拓扑信息 |
Type-2 LSA Network |
DR接口的IP 地址 |
单个MA网络中的DR所在的路由器的RID |
单区域 |
单个MA网络的补充信息 |
Type-3 LSA Sum-Net(summary) |
域间路由的目标网络号 |
ABR,在通过下一个ABR 时,将修改为新的ABR |
ABR相邻的单区域 |
域间路由信息 |
Type-5 LSA External(ase ) |
域外路由信息的目标网络号 |
ASBR |
整个OSPF区域 |
域外路由信息 |
Type-4 LSA Sum-Asbr(asbr) |
ASBR的RID |
ABR(ASBR所在区域的 ABR设备),在通过下一个ABR时,将修改为新的 ABR |
除了ASBR所在区域外的单区域 |
ASBR的位置信息 |
所有传递路由信息的LSA都需要通过1类和2类LSA进行验算。 --- 通过1类2类LSA信息找到通告者的位置。
Type-3 LSA --- 携带传递的是域间的路由信息,通告者为区域之间的ABR设备,使用通告的路由条目的目标网络号作为LS ID。三类LSA中携带的开销值为通告路由器到达目标网段的开销值。
Type-5 LSA --- 携带传递的是域外的路由信息,通告者为ASBR啊,使用通告的路由条目的目标网络号作为LS ID。
Metric --- 因为重发布执行后,需要将其他的路由协议按照当前路由协议的规则导入,但由于不同路由协议的开销值评判标准不同,所以,在重发布后,我们将直接舍弃源协议的开销值,而定义一个规定值 --- seed Metric(种子度量值),OSPF协议默认的种子度量值1。
[r4-ospf-1]import-route rip 1 cost 10 --- 在重发布中修改种子度量值
E type --- 一个标记位,有0和1两种变化,置0则代表类型1,置1则代表类型2; --- 这里的类型指的是开销值的类型。
类型1:如果采用类型1,则所有域内设备到达域外网段的开销值都等于种子度量值加本地到达通告者的开销值。
类型2:OSPF默认采用类型2,如果开销值的类型为类型2,则所有域内设备到达域外网段的开销值都等于种子度量值。
Forwarding Address --- 转发地址 --- 应对选路不佳的情况,如果存在选路不佳的情况,则通告者将会把最佳的下一跳放入转发地址当中,接收者看到转发地址中存在数据,则将不按照算法来计算下一跳,而直接使用转发地址作为下一跳。默认情况下,在不存在选路不佳时,将使用0.0.0.0进行填充。
TAG --- 标签 --- 可以给流量打标签,方便后续进行流量抓取,做策略使用
[r4-ospf-1]import-route rip 1 tag
Type-4 LSA --- 携带和传递的是ASBR的位置信息,通告者为区域之间的ABR设备,使用ASBR设备的RID作为LS ID。四类LSA中携带的开销值为通告路由器到ASBR的开销值。
1类LSA结构
V --- 置1,则代表该路由器是VLINK的一个端点
E --- 置1,代表该路由器是ASBR设备
B --- 置1,代表该设备为ABR设备
OSPF的优化
1,汇总 --- 减少骨干区域LSA更新量
2,特殊区域 --- 减少非骨干区域LSA更新量
1,汇总 --- OSPF无法像RIP一样实现接口汇总,因为OSPF区域之间传递路由信息,所以,
OSPF的汇总被称为区域汇总。
域间路由汇总 --- 域间指OSPF区域之间,其实质是在ABR上针对3类LSA进行汇总
[r1-ospf-1-area-0.0.0.2]abr-summary 192.168.0.0 255.255.252.0
注意:在进行区域汇总时,一定是ABR设备通过1类,2类LSA学习到拓扑信息后转换成的三类LSA才能汇总。
域外路由汇总 --- 域外指OSPF网络之外,其实质是在ASBR上针对5类/7类LSA进行汇总
[r4-ospf-1]asbr-summary 172.16.0.0 255.255.252.0
域外汇总网段种子度量值的计算方法:
TYPE1:如果是类型1,则汇总网段的种子度量值为所有明细网段种子度量值中最大值。
TYPE2:如果是类型2,则汇总网段的种子度量值为所有明细网段种子度量值中最大值加1。
[r4-ospf-1]import-route rip 1 cost 10 type 1