uber go 编码规范

内容列表

  • 指导原则
    • 指向interface的指针
    • 接收器(receiver)与接口
    • 零值Mutex是有效的
    • 在边界处拷贝Slices和Mapsies
    • 使用defer做清理
    • Channel的size要么是1要么是无缓冲的
    • 枚举从1开始
    • 错误类型
    • 错误包装
    • 处理类型断言失败
    • 不要Panic
    • 避免可变全局变量
  • 性能
    • strconv性能优于fmt
    • 避免string到byte的转换
    • 最好指定Map容量大小
  • 代码风格
    • 保持一致
    • 相似的声明放在一组
    • Import组内的包导入顺序
    • 包名
    • 函数名
    • 导入别名
    • 函数分组与顺序
    • 减少嵌套
    • 不必要的else
    • 顶层变量声明
    • 结构体中的嵌入
    • 使用字段名初始化结构体
    • 本地变量声明
    • nil是一个有效的slice
    • 缩小变量作用域
    • 避免裸参数
    • 使用原始字符串字面值,避免转义
    • 初始化结构体引用
    • 初始化Maps
    • 格式化字符串放在Printf外部
    • 为Printf样式函数命名
  • 模式
    • 测试表
    • 功能选项

指导原则

指向interface的指针

几乎不需要指向接口类型的指针。我们应该将接口进行值传递,在这样的传递过程中,实质上传递的底层数据仍然可以是指针。

接口实质上在底层用两个字段表示

  1. 一个包含type信息的指针。
  2. 数据指针。如果存储的数据是指针,则直接存储。如果存储的数据是一个值,则存储指向该值的指针。

如果要接口方法修改底层数据,则必须用指向目标对象的指针赋值给接口类型变量

接收器与接口

使用值接收器的方法既可以通过值调用,也可以通过指针调用。

例如,

type S struct {
  data string
}

func (s S) Read() string {
  return s.data
}

func (s *S) Write(str string) {
  s.data = str
}

sVals := map[int]S{1: {"A"}}

//只能通过值调用Read
sVals[1].Read()

//下面无法通过编译:
//sVals[1].Write("test")

sPtrs := map[int]*S{1: {"A"}}

//通过指针既可以调用Read,也可以调用Write方法
sPtrs[1].Read()
sPtrs[1].Write("test")

同样,即使该方法具有值接收器,也可以通过指针来满足接口。

type F interface {
  f()
}

type S1 struct{}

func (s S1) f() {}

type S2 struct{}

func (s *S2) f() {}

s1Val := S1{}
s1Ptr := &S1{}
s2Val := S2{}
s2Ptr := &S2{}

var i F
i = s1Val
i = s1Ptr
i = s2Ptr

//下面代码无法通过编译。因为s2Val是一个值,而S2的f方法中没有使用值接收器
//i = s2Val

Effective Go 有详尽的解释 Pointers vs. Values.

零值Mutex是有效的

sync.Mutex和sync.RWMutex是有效的。因此你几乎不需要一个指向mutex的指针。

Bad

mu := new(sync.Mutex)
mu.Lock()

Good

var mu sync.Mutex
mu.Lock()

如果你使用结构体指针,mutex可以非指针形式作为结构体的组成字段,或者更好的方式是直接嵌入到结构体中。

type smap struct {
  sync.Mutex // 仅针对非导出类型

  data map[string]string
}

func newSMap() *smap {
  return &smap{
    data: make(map[string]string),
  }
}

func (m *smap) Get(k string) string {
  m.Lock()
  defer m.Unlock()

  return m.data[k]
}

如果是私有结构体类型或是要实现Mutex接口的类型,我们可以使用嵌入mutex的方法

type SMap struct {
  mu sync.Mutex

  data map[string]string
}

func NewSMap() *SMap {
  return &SMap{
    data: make(map[string]string),
  }
}

func (m *SMap) Get(k string) string {
  m.mu.Lock()
  defer m.mu.Unlock()

  return m.data[k]
}

对于导出类型,请使用私有锁

在边界处拷贝Slices和Maps

slices和maps包含了指向底层数据的指针,因此在需要复制它们时要特别注意。

接收Slices和Maps

Go语言中所有的传参都是值传递(传值),都是一个副本,一个拷贝。因为拷贝的内容有时候是非引用类型(int、string、struct等这些),这样就在函数中就无法修改原内容数据;有的是引用类型(指针、map、slice、chan等这些),这样就可以修改原内容数据。

需要特别注意!当map或slice作为函数参数传入时,如果你不小心保留了对它们的引用,则用户可以对其进行修改。

Bad

func (d *Driver) SetTrips(trips []Trip) {
  d.trips = trips
}

trips := ...
d1.SetTrips(trips)

// 是要修改d1.trips吗?
trips[0] = ...

Good

func (d *Driver) SetTrips(trips []Trip) {
  d.trips = make([]Trip, len(trips))
  copy(d.trips, trips)
}

trips := ...
d1.SetTrips(trips)

// 修改trips[0],但不会影响到d1.trips
trips[0] = ...

slice 和 map 作为返回值

当我们的函数返回 slice 或者 map 的时候,也要注意是不是直接返回了内部数据的引用到外部。

Bad

type Stats struct {
  mu sync.Mutex
  counters map[string]int
}

// Snapshot返回当前状态
func (s *Stats) Snapshot() map[string]int {
  s.mu.Lock()
  defer s.mu.Unlock()

  return s.counters
}

// snapshot不再受到锁的保护, 所以
// 对snapshot的访问将会受到数据竞争的影响
snapshot := stats.Snapshot()

Good

type Stats struct {
  mu sync.Mutex
  counters map[string]int
}

func (s *Stats) Snapshot() map[string]int {
  s.mu.Lock()
  defer s.mu.Unlock()

  result := make(map[string]int, len(s.counters))
  for k, v := range s.counters {
    result[k] = v
  }
  return result
}

// snapshot现在是一个拷贝
snapshot := stats.Snapshot()

使用defer做清理

使用defer清理资源,诸如文件和锁。

Bad

p.Lock()
if p.count < 10 {
  p.Unlock()
  return p.count
}

p.count++
newCount := p.count
p.Unlock()

return newCount

// 当有多个return分支时,很容易遗忘unlock

Good

p.Lock()
defer p.Unlock()

if p.count < 10 {
  return p.count
}

p.count++
return p.count

// 可读性更高

Defer的开销非常小,只有在您可以证明函数执行时间处于纳秒级的程度时,才应避免这样做。使用defer提升可读性是值得的,因为使用它们的成本微不足道。尤其适用于那些不仅仅是简单内存访问的较大的方法,在这些方法中其他计算的资源消耗远超过defer

Channel的size要么是1要么是无缓冲的

channel通常size应为1或是无缓冲的。默认情况下,channel是无缓冲的,其size为零。任何其他size都必须经过严格的审查。使用channel时应该慎重考虑如何确定大小,需要思考:是什么阻止了通道在负载下被填满,阻止写入,以及发生这种情况时发生了什么。

Bad

// 对任何人来说都应该够了!
c := make(chan int, 64)

Good

// channel尺寸:1
c := make(chan int, 1) // 或者
// 无缓冲channel,大小为0
c := make(chan int)

枚举从1开始

在Go中引入枚举的标准方法是声明一个自定义类型和一个使用了iotaconst组。由于变量的默认值为0,因此通常应以非零值开头枚举。

Bad

type Operation int

const (
  Add Operation = iota
  Subtrac
  Multiply
)

// Add=0, Subtract=1, Multiply=2

Good

type Operation int

const (
  Add Operation = iota + 1
  Subtract
  Multiply
)

// Add=1, Subtract=2, Multiply=3

在某些情况下,使用零值是有意义的(枚举从零开始),例如,当零值是理想的默认行为时。

type LogOutput int

const (
  LogToStdout LogOutput = iota
  LogToFile
  LogToRemote
)

// LogToStdout=0, LogToFile=1, LogToRemote=2

错误类型

Go中有多种声明错误(Error)的选项:

  • errors.New 对于简单静态字符串的错误
  • fmt.Errorf 用于格式化的错误字符串
  • 实现 Error() 方法的自定义类型
  • 试用"pkg/errors".Wrap的wrapped error

返回错误时,请考虑以下因素以确定最佳选择:

  • 这是一个不需要额外信息的简单错误吗?如果是这样,errors.New 就足够了。

  • 客户需要检测并处理此错误吗?如果是这样,则应使用自定义类型并实现该Error()方法。

  • 您是否正在传播下游函数返回的错误?如果是这样,请查看本文后面有关错误包装部分的内容

  • 否则, fmt.Errorf 足够.

如果客户需要检测错误,并且是通过errors.New创建的一个简单的错误,请使用var 声明这个错误类型。

Bad

// package foo

func Open() error {
  return errors.New("could not open")
}

// package bar

func use() {
  if err := foo.Open(); err != nil {
    if err.Error() == "could not open" {
      // handle
    } else {
      panic("unknown error")
    }
  }
}

Good

// package foo

var ErrCouldNotOpen = errors.New("could not open")

func Open() error {
  return ErrCouldNotOpen
}

// package bar

if err := foo.Open(); err != nil {
  if err == foo.ErrCouldNotOpen {
    // handle
  } else {
    panic("unknown error")
  }
}

如果您有可能需要客户端检测的错误,并且想向其中添加更多信息(例如,它不是静态字符串),则应使用自定义类型。

Bad

func open(file string) error {
  return fmt.Errorf("file %q not found", file)
}

func use() {
  if err := open(); err != nil {
    if strings.Contains(err.Error(), "not found") {
      // handle
    } else {
      panic("unknown error")
    }
  }
}

Good

type errNotFound struct {
  file string
}

func (e errNotFound) Error() string {
  return fmt.Sprintf("file %q not found", e.file)
}

func open(file string) error {
  return errNotFound{file: file}
}

func use() {
  if err := open(); err != nil {
    if _, ok := err.(errNotFound); ok {
      // handle
    } else {
      panic("unknown error")
    }
  }
}

直接导出自定义错误类型时要小心,因为这意味着他们已经成为包的公开API的一部分了。更好的方式是暴露一个匹配函数来检测错误。

// package foo

type errNotFound struct {
  file string
}

func (e errNotFound) Error() string {
  return fmt.Sprintf("file %q not found", e.file)
}

func IsNotFoundError(err error) bool {
  _, ok := err.(errNotFound)
  return ok
}

func Open(file string) error {
  return errNotFound{file: file}
}

// package bar

if err := foo.Open("foo"); err != nil {
  if foo.IsNotFoundError(err) {
    // handle
  } else {
    panic("unknown error")
  }
}

错误包装

一个(函数/方法)调用失败时,有三种主要的传播方式:

  • 如果没有要添加的其他上下文,并且您想要维护原始错误类型,则返回原始错误。
  • 使用"pkg/errors".Wrap添加上下文,以便错误消息可以提供更多上下文。 "pkg/errors".Cause可用于提取原始错误。
  • 使用 fmt.Errorf 。如果调用者不需要检测或处理的特定错误情况。


建议在可能的地方添加上下文,以使您获得诸如“调用服务foo:连接被拒绝”之类的更有用的错误,而不是诸如“连接被拒绝”之类的模糊错误。

在将上下文添加到返回的错误时,请避免使用"failed to"之类的短语来保持上下文简洁,这些短语会陈述明显的内容,并随着错误在堆栈中的渗透而逐渐堆积:

Bad

s, err := store.New()
if err != nil {
    return fmt.Errorf(
        "failed to create new store: %s", err)
}
failed to x: failed to y: failed to create new store: the error

Good

s, err := store.New()
if err != nil {
    return fmt.Errorf(
        "new store: %s", err)
}
x: y: new store: the error

但是,一旦将错误发送到另一个系统,就应该明确消息是错误消息(例如使用err标记,或在日志中以”Failed”为前缀)。

参见 Don't just check errors, handle them gracefully.

处理类型断言失败

类型断言的单个返回值形式针对不正确的类型将产生panic。因此,请始终使用“comma ok”的惯用方法。

Bad

t := i.(string)

Good

t, ok := i.(string)
if !ok {
  // 优雅处理错误
}

不要Panic


在生产环境中运行的代码必须避免出现panic。panic是级联故障的主要根源 。如果发生错误,该函数必须返回错误,并允许调用方决定如何处理它。

Bad

func foo(bar string) {
  if len(bar) == 0 {
    panic("bar must not be empty")
  }
  // ...
}

func main() {
  if len(os.Args) != 2 {
    fmt.Println("USAGE: foo ")
    os.Exit(1)
  }
  foo(os.Args[1])
}

Good

func foo(bar string) error {
  if len(bar) == 0 {
    return errors.New("bar must not be empty")
  }
  // ...
  return nil
}

func main() {
  if len(os.Args) != 2 {
    fmt.Println("USAGE: foo ")
    os.Exit(1)
  }
  if err := foo(os.Args[1]); err != nil {
    panic(err)
  }
}

panic/recover不是错误处理策略。仅当发生不可恢复的事情(例如:nil引用)时,程序才必须panic。程序初始化是一个例外:程序启动时应使程序中止的不良情况可能会引起panic。

var _statusTemplate = template.Must(template.New("name").Parse("_statusHTML"))

即便是在test中,也优先使用t.Fatalt.FailNow 来标记test是失败的,而不是panic。

Bad

// func TestFoo(t *testing.T)

f, err := ioutil.TempFile("", "test")
if err != nil {
  panic("failed to set up test")
}

Good

// func TestFoo(t *testing.T)

f, err := ioutil.TempFile("", "test")
if err != nil {
  t.Fatal("failed to set up test")
}

避免可变全局变量

避免改变全局变量,而选择依赖注入。
这适用于函数指针以及其他类型的值。

Bad

// sign.go

var _timeNow = time.Now

func sign(msg string) string {
  now := _timeNow()
  return signWithTime(msg, now)
}
// sign_test.go

func TestSign(t *testing.T) {
  oldTimeNow := _timeNow
  _timeNow = func() time.Time {
    return someFixedTime
  }
  defer func() { _timeNow = oldTimeNow }()

  assert.Equal(t, want, sign(give))
}

Good

// sign.go

type signer struct {
  now func() time.Time
}

func newSigner() *signer {
  return &signer{
    now: time.Now,
  }
}

func (s *signer) Sign(msg string) string {
  now := s.now()
  return signWithTime(msg, now)
}
// sign_test.go

func TestSigner(t *testing.T) {
  s := newSigner()
  s.now = func() time.Time {
    return someFixedTime
  }

  assert.Equal(t, want, s.Sign(give))
}

性能

性能方面的特定准则,仅适用于热路径。

strconv性能优于fmt

将原语转换为字符串或从字符串转换时,strconv 速度比 fmt 更快。

Bad

for i := 0; i < b.N; i++ {
  s := fmt.Sprint(rand.Int())
}
BenchmarkFmtSprint-4    143 ns/op    2 allocs/op

Good

for i := 0; i < b.N; i++ {
  s := strconv.Itoa(rand.Int())
}
BenchmarkStrconv-4    64.2 ns/op    1 allocs/op

避免string到byte的转换


不要重复从固定字符串创建字节片。相反,请执行一次转换并捕获结果。

Bad

for i := 0; i < b.N; i++ {
  w.Write([]byte("Hello world"))
}
BenchmarkBad-4   50000000   22.2 ns/op

Good

data := []byte("Hello world")
for i := 0; i < b.N; i++ {
  w.Write(data)
}
BenchmarkGood-4  500000000   3.25 ns/op

最好指定Map容量大小

如果可以,在用 make()初始化map时给定Map容量大小暗示。

make(map[T1]T2, hint)

make() 添加一定的容量提示一定程度上会减少map底层添加元素时的内存不断分配的消耗。

Bad

m := make(map[string]os.FileInfo)

files, _ := ioutil.ReadDir("./files")
for _, f := range files {
    m[f.Name()] = f
}

m is created without a size hint; there may be more allocations at assignment time.

Good


files, _ := ioutil.ReadDir("./files")

m := make(map[string]os.FileInfo, len(files))
for _, f := range files {
    m[f.Name()] = f
}

m is created with a size hint; there may be fewer allocations at assignment time.

代码风格

保持一致

本文件中概述的一些准则可以客观评估;
其他的是情景的、上下文的或主观的。

最重要的是, 保持一致.

一致的代码更容易维护,更容易合理化,需要的更少认知开销,并且随着新的约定的出现更容易迁移、更新或者修复同一类错误。

相反,在一个单一的代码库会出现多种不同或冲突的风格的代码风格,会导致维护开销、不确定性和认知失调,所有这些都会直接导致开发速度地下、代码审查异常痛苦,当然还有BUG。

将这些准则应用于代码库时,建议更改在包级别(或更高的)层级生成.

相似的声明放在一组

Go语言支持将相似的声明放在一个组内:

Bad

import "a"
import "b"

Good

import (
  "a"
  "b"
)

这同样适用于常量、变量和类型声明:

Bad


const a = 1
const b = 2



var a = 1
var b = 2



type Area float64
type Volume float64

Good

const (
  a = 1
  b = 2
)

var (
  a = 1
  b = 2
)

type (
  Area float64
  Volume float64
)

仅将相关的声明放在一组。不要将不相关的声明放在一组。

Bad

type Operation int

const (
  Add Operation = iota + 1
  Subtract
  Multiply
  ENV_VAR = "MY_ENV"
)

Good

type Operation int

const (
  Add Operation = iota + 1
  Subtract
  Multiply
)

const ENV_VAR = "MY_ENV"

分组使用的位置没有限制,例如:你可以在函数内部使用它们:

Bad

func f() string {
  var red = color.New(0xff0000)
  var green = color.New(0x00ff00)
  var blue = color.New(0x0000ff)

  ...
}

Good

func f() string {
  var (
    red   = color.New(0xff0000)
    green = color.New(0x00ff00)
    blue  = color.New(0x0000ff)
  )

  ...
}

Import组内的包导入顺序

应该有两类导入组:

  • 标准库
  • 其他

默认情况下,这是goimports应用的分组。

Bad

import (
  "fmt"
  "os"
  "go.uber.org/atomic"
  "golang.org/x/sync/errgroup"
)

Good

import (
  "fmt"
  "os"

  "go.uber.org/atomic"
  "golang.org/x/sync/errgroup"
)

包名

当命名包时,请按下面规则选择一个名称:

  • 全部小写。没有大写或下划线。
  • 大多数使用命名导入的情况下,不需要重命名。
  • 简短而简洁。请记住,在每个使用的地方都完整标识了该名称。
  • 不用复数。例如 net/url, 而不是 net/urls.
  • 别写“common”,“util”,“shared”或“lib”。这些是不好的,信息量不足的名称。

另请参阅[包名规范] 和 [Go包样式指南].

函数名

我们遵循Go社区关于使用MixedCaps作为函数名约定。有一个例外,为了对相关的测试用例进行分组,函数名可能包含下划线,如: TestMyFunction_WhatIsBeingTested

导入别名

如果程序包名称与导入路径的最后一个元素不匹配,则必须使用导入别名。

import (
  "net/http"

  client "example.com/client-go"
  trace "example.com/trace/v2"
)

在所有其他情况下,除非导入之间有直接冲突,否则应避免导入别名。

Bad

import (
  "fmt"
  "os"


  nettrace "golang.net/x/trace"
)

Good

import (
  "fmt"
  "os"
  "runtime/trace"

  nettrace "golang.net/x/trace"
)

函数分组与顺序

  • 函数应按粗略的调用顺序排序。
  • 同一文件中的函数应按接收者分组。

因此,导出的函数应先出现在文件中,放在struct, const, var定义的后面。

在定义类型之后,但在接收者的其余方法之前,可能会出现一个newXYZ()/NewXYZ()

由于函数是按接收者分组的,因此普通工具函数应在文件末尾出现。

Bad

func (s *something) Cost() {
  return calcCost(s.weights)
}

type something struct{ ... }

func calcCost(n []int) int {...}

func (s *something) Stop() {...}

func newSomething() *something {
    return &something{}
}

Good

type something struct{ ... }

func newSomething() *something {
    return &something{}
}

func (s *something) Cost() {
  return calcCost(s.weights)
}

func (s *something) Stop() {...}

func calcCost(n []int) int {...}

减少嵌套

代码应通过尽可能先处理错误情况/特殊情况,尽早返回或继续循环来减少嵌套。减少嵌套多个级别的代码的代码量。

看下面的示例,优先判断错误,有错误尽快continue进行循环。正常的无需判断err的逻辑放在最后。

Bad

for _, v := range data {
  if v.F1 == 1 {
    v = process(v)
    if err := v.Call(); err == nil {
      v.Send()
    } else {
      return err
    }
  } else {
    log.Printf("Invalid v: %v", v)
  }
}

Good

for _, v := range data {
  if v.F1 != 1 {
    log.Printf("Invalid v: %v", v)
    continue
  }

  v = process(v)
  if err := v.Call(); err != nil {
    return err
  }
  v.Send()
}

不必要的else

如果在if的两个分支中都设置了变量,则可以将其替换为单个if。

Bad

var a int
if b {
  a = 100
} else {
  a = 10
}

Good

a := 10
if b {
  a = 100
}

顶层变量声明

在顶层,使用标准var关键字。请勿指定类型,除非它与表达式的类型不同。

Bad

var _s string = F()

func F() string { return "A" }

Good

var _s = F()
// 由于F已经明确了返回一个字符串类型,因此我们没有必要显式指定_s的类型

func F() string { return "A" }

如果表达式的类型与所需的类型不完全匹配,请明确指定类型。

type myError struct{}

func (myError) Error() string { return "error" }

func F() myError { return myError{} }

var _e error = F()
// F returns an object of type myError but we want error.

结构体中的嵌入

嵌入式类型(例如mutex)应位于结构体内的字段列表的顶部,并且必须有一个空行将嵌入式字段与常规字段分隔开。

Bad

type Client struct {
  version int
  http.Client
}

Good

type Client struct {
  http.Client

  version int
}

使用字段名初始化结构体

初始化结构体时,几乎始终应该指定字段名称。现在由go vet强制执行。

Bad

k := User{"John", "Doe", true}

Good

k := User{
    FirstName: "John",
    LastName: "Doe",
    Admin: true,
}

例外:如果有3个或更少的字段,则可以在测试表中省略字段名称。

tests := []struct{
  op Operation
  want string
}{
  {Add, "add"},
  {Subtract, "subtract"},
}

本地变量声明

如果将变量明确设置为某个值,则应使用短变量声明形式(:=)。

Bad

var s = "foo"

Good

s := "foo"

但是,在某些情况下,var使用关键字时默认值会更清晰。例如,声明空切片。

Bad

func f(list []int) {
  filtered := []int{}
  for _, v := range list {
    if v > 10 {
      filtered = append(filtered, v)
    }
  }
}

Good

func f(list []int) {
  var filtered []int
  for _, v := range list {
    if v > 10 {
      filtered = append(filtered, v)
    }
  }
}

nil是一个有效的slice

nil是一个有效的长度为0的slice,这意味着:

  • 您不应明确返回长度为零的切片。返回nil来代替。

Bad

if x == "" {
  return []int{}
}

Good

if x == "" {
  return nil
}
  • 要检查切片是否为空,请始终使用len(s) == 0。不要检查 nil

Bad

func isEmpty(s []string) bool {
  return s == nil
}

Good

func isEmpty(s []string) bool {
  return len(s) == 0
}
  • 零值切片(var声明的slice)可立即使用,无需调用make创建。

Bad

nums := []int{}
// or, nums := make([]int)

if add1 {
  nums = append(nums, 1)
}

if add2 {
  nums = append(nums, 2)
}

Good

var nums []int

if add1 {
  nums = append(nums, 1)
}

if add2 {
  nums = append(nums, 2)
}

缩小变量作用域

如果有可能,尽量缩小变量作用范围。除非它与减少嵌套的规则冲突。

Bad

err := ioutil.WriteFile(name, data, 0644)
if err != nil {
 return err
}

Good

if err := ioutil.WriteFile(name, data, 0644); err != nil {
 return err
}

如果需要在if之外使用函数调用的结果,则不应尝试缩小范围。

Bad

if data, err := ioutil.ReadFile(name); err == nil {
  err = cfg.Decode(data)
  if err != nil {
    return err
  }

  fmt.Println(cfg)
  return nil
} else {
  return err
}

Good

data, err := ioutil.ReadFile(name)
if err != nil {
   return err
}

if err := cfg.Decode(data); err != nil {
  return err
}

fmt.Println(cfg)
return nil

避免裸参数

函数调用中的裸参数可能会损害可读性。当参数名称的含义不明显时,请为参数添加C样式注释(/* ... */)。

Bad

// func printInfo(name string, isLocal, done bool)

printInfo("foo", true, true)

Good

// func printInfo(name string, isLocal, done bool)

printInfo("foo", true /* isLocal */, true /* done */)

更好的作法是,将裸bool类型替换为自定义类型,以获得更易读和类型安全的代码。将来,该参数不仅允许两个状态(true/false)。

type Region int

const (
  UnknownRegion Region = iota
  Local
)

type Status int

const (
  StatusReady = iota + 1
  StatusDone
  // Maybe we will have a StatusInProgress in the future.
)

func printInfo(name string, region Region, status Status)

使用原始字符串字面值,避免转义

Go支持原始字符串字面值,可以跨越多行并包含引号。使用这些字符串可以避免更难阅读的手工转义的字符串。

Bad

wantError := "unknown name:\"test\""

Good

wantError := `unknown error:"test"`

初始化结构体引用

在初始化结构引用时,请使用&T{}代替new(T),以使其与结构体初始化一致。

Bad

sval := T{Name: "foo"}

// inconsistent
sptr := new(T)
sptr.Name = "bar"

Good

sval := T{Name: "foo"}

sptr := &T{Name: "bar"}

初始化Maps

make(..) 创建空的Maps,用程序填充Maps。
这中写法使得map初始化和声明看起来是不同的,如果需要,以后可以很容易地为map添加大小提示。

Bad

var (
  // m1 is safe to read and write;
  // m2 will panic on writes.
  m1 = map[T1]T2{}
  m2 map[T1]T2
)

声明和初始化看起来是相似的。
Good

var (
  // m1 is safe to read and write;
  // m2 will panic on writes.
  m1 = make(map[T1]T2)
  m2 map[T1]T2
)

声明和初始化看起来是不同的。

在可能的情况下,在使用make()初始化时给定容量提示。具体内容见:最好指定Map容量大小

另一方面,如果map包含固定的元素列表,使用map文本初始化map。

Bad

m := make(map[T1]T2, 3)
m[k1] = v1
m[k2] = v2
m[k3] = v3

Good

m := map[T1]T2{
  k1: v1,
  k2: v2,
  k3: v3,
}

基本的经验法则是在添加一组固定的元素,否则使用make(并指定大小提示,如果有的话)。

格式化字符串放在Printf外部

如果为Printf-style 函数声明格式化字符串,将格式化字符串放在函数外面 ,并将其设置为const常量。

这有助于 go vet 对格式字符串进行静态分析。

Bad

msg := "unexpected values %v, %v\n"
fmt.Printf(msg, 1, 2)

Good

const msg = "unexpected values %v, %v\n"
fmt.Printf(msg, 1, 2)

为Printf样式函数命名

声明Printf-style函数时,请确保go vet可以检查它的格式化字符串。

这意味着应尽可能使用预定义的Printf-style函数名称。go vet默认会检查它们。更多相关信息,请参见Printf系列。

如果不能使用预定义的名称,请以 f 结尾:Wrapf,而非 Wrap。因为 go vet 可以指定检查特定的 Printf 样式名称,但名称必须以 f 结尾。

$ go vet -printfuncs=wrapf,statusf

另见 go vet: Printf family check.

模式

测试表

在核心测试逻辑重复时,将表驱动测试与子测试一起使用,以避免重复代码。

Bad

// func TestSplitHostPort(t *testing.T)

host, port, err := net.SplitHostPort("192.0.2.0:8000")
require.NoError(t, err)
assert.Equal(t, "192.0.2.0", host)
assert.Equal(t, "8000", port)

host, port, err = net.SplitHostPort("192.0.2.0:http")
require.NoError(t, err)
assert.Equal(t, "192.0.2.0", host)
assert.Equal(t, "http", port)

host, port, err = net.SplitHostPort(":8000")
require.NoError(t, err)
assert.Equal(t, "", host)
assert.Equal(t, "8000", port)

host, port, err = net.SplitHostPort("1:8")
require.NoError(t, err)
assert.Equal(t, "1", host)
assert.Equal(t, "8", port)

Good

// func TestSplitHostPort(t *testing.T)

tests := []struct{
  give     string
  wantHost string
  wantPort string
}{
  {
    give:     "192.0.2.0:8000",
    wantHost: "192.0.2.0",
    wantPort: "8000",
  },
  {
    give:     "192.0.2.0:http",
    wantHost: "192.0.2.0",
    wantPort: "http",
  },
  {
    give:     ":8000",
    wantHost: "",
    wantPort: "8000",
  },
  {
    give:     "1:8",
    wantHost: "1",
    wantPort: "8",
  },
}

for _, tt := range tests {
  t.Run(tt.give, func(t *testing.T) {
    host, port, err := net.SplitHostPort(tt.give)
    require.NoError(t, err)
    assert.Equal(t, tt.wantHost, host)
    assert.Equal(t, tt.wantPort, port)
  })
}

测试表在错误消息处理上,包括注入上下文信息、减少重复的逻辑、添加新的测试用例,都变得更加容易。

我们遵循这样的约定:将结构体切片称为tests。 每个测试用例称为tt。此外,我们鼓励使用 givewant前缀说明每个测试用例的输入和输出值。

tests := []struct{
  give     string
  wantHost string
  wantPort string
}{
  // ...
}

for _, tt := range tests {
  // ...
}

功能选项

功能选项是一种模式,声明一个不透明Option类型,该类型记录某些内部结构体的信息。您的函数接受这些不定数量的选项参数,并将选项参数上的信息作用于内部结构上。

此模式可用于扩展构造函数和实现其他公共 API 中的可选参数,特别是这些参数已经有三个或者超过三个的情况下。

Bad

// package db

func Open(
  addr string,
  cache bool,
  logger *zap.Logger
) (*Connection, error) {
  // ...
}

必须始终提供cache和logger参数,即使用户希望使用默认值。

db.Open(addr, db.DefaultCache, zap.NewNop())
db.Open(addr, db.DefaultCache, log)
db.Open(addr, false /* cache */, zap.NewNop())
db.Open(addr, false /* cache */, log)

Good

// package db

type Option interface {
  // ...
}

func WithCache(c bool) Option {
  // ...
}

func WithLogger(log *zap.Logger) Option {
  // ...
}

// Open creates a connection.
func Open(
  addr string,
  opts ...Option,
) (*Connection, error) {
  // ...
}

Options 仅在需要时提供

db.Open(addr)
db.Open(addr, db.WithLogger(log))
db.Open(addr, db.WithCache(false))
db.Open(
  addr,
  db.WithCache(false),
  db.WithLogger(log),
)

我们建议的实现此模式的方法是使用Option接口,

保存不可导出的方法,在不可导出的Option上记录选项结构。

type options struct {
  cache  bool
  logger *zap.Logger
}

type Option interface {
  apply(*options)
}

type cacheOption bool

func (c cacheOption) apply(opts *options) {
  opts.cache = bool(c)
}

func WithCache(c bool) Option {
  return cacheOption(c)
}

type loggerOption struct {
  Log *zap.Logger
}

func (l loggerOption) apply(opts *options) {
  opts.Logger = l.Log
}

func WithLogger(log *zap.Logger) Option {
  return loggerOption{Log: log}
}

// Open creates a connection.
func Open(
  addr string,
  opts ...Option,
) (*Connection, error) {
  options := options{
    cache:  defaultCache,
    logger: zap.NewNop(),
  }

  for _, o := range opts {
    o.apply(&options)
  }

  // ...
}

注意,有一种用闭包实现这个模式的方法,但是我们相信上面的模式为使用者提供了更大的灵活性,便于用户调试和测试。特别是,它允许在测试和模拟中相互比较,这用闭包是不可能的。此外,它还允许选项实现其他接口,包括fmt.Stringer允许用"用户可读的字符串"表示option。

另见,

  • Self-referential functions and the design of options

  • Functional options for friendly APIs

你可能感兴趣的:(uber go 编码规范)