代码随想录算法训练营第五十三天| LeetCode1143.最长公共子序列 1035.不相交的线 53. 最大子序和

1143.最长公共子序列

题目:力扣

class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
        vector> dp(text1.size()+1,vector(text2.size()+1,0));
        for(int i = 1; i <= text1.size(); ++i){
            for(int j = 1; j <= text2.size(); ++j){
                if(text1[i-1] == text2[j-1]){
                    dp[i][j] = dp[i-1][j-1] + 1;
                }else{
                    dp[i][j] = max(dp[i-1][j],dp[i][j-1]);
                }
            }
        }
        return dp[text1.size()][text2.size()];
    }
};

1035.不相交的线

题目:力扣

class Solution {
public:
    int maxUncrossedLines(vector& nums1, vector& nums2) {
        vector> dp(nums1.size()+1,vector(nums2.size()+1,0));
        for(int i = 1; i <= nums1.size(); ++i){
            for(int j = 1; j <= nums2.size(); ++j){
                if(nums1[i-1] == nums2[j-1]){
                    dp[i][j] = dp[i-1][j-1] + 1;
                }else{
                    dp[i][j] = max(dp[i-1][j],dp[i][j-1]);
                }
            }
        }
        return dp[nums1.size()][nums2.size()];
    }
    
};

53. 最大子序和 动态规划

题目:力扣

class Solution {
public:
    int maxSubArray(vector& nums) {
        vector dp(nums.size(),0);
        dp[0] = nums[0];
        int result = dp[0];
        for(int i = 1; i < nums.size(); ++i){
            dp[i] = max(dp[i-1] + nums[i], nums[i]);
            if(dp[i] > result) result = dp[i];
        }
        return result;
    }
};

总结

题型:最长公共子序列

你可能感兴趣的:(代码随想录算法训练营,算法,leetcode,职场和发展)