参考链接: class torch.optim.lr_scheduler.StepLR(optimizer, step_size, gamma=0.1, last_epoch=-1, verbose=False)
配套代码下载链接: 测试学习率调度器.zip
实验代码展示:
# torch.optim.lr_scheduler.StepLR
import matplotlib.pyplot as plt
import numpy as np
import torch
from torch.utils.data import Dataset, DataLoader
from torch import nn
from torch.autograd import Function
import random
import os
seed = 20200910
os.environ['PYTHONHASHSEED'] = str(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # if you are using multi-GPU.
np.random.seed(seed) # Numpy module.
random.seed(seed) # Python random module.
torch.manual_seed(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
class Dataset4cxq(Dataset):
def __init__(self, length):
self.length = length
def __len__(self):
return self.length
def __getitem__(self, index):
if type(index) != type(2) and type(index) != (slice):
raise TypeError('索引类型错误,程序退出...')
# index 是单个数
if type(index) == type(2):
if index >= self.length or index < -1 * self.length:
# print("索引越界,程序退出...")
raise IndexError("索引越界,程序退出...")
elif index < 0:
index = index + self.length
Celsius = torch.randn(1,1,dtype=torch.float).item()
Fahrenheit = 32.0 + 1.8 * Celsius
return Celsius, Fahrenheit
def collate_fn4cxq(batch):
list_c = []
list_f = []
for c, f in batch:
list_c.append(c)
list_f.append(f)
list_c = torch.tensor(list_c)
list_f = torch.tensor(list_f)
return list_c, list_f
if __name__ == "__main__":
my_dataset = Dataset4cxq(32)
# for c,f in my_dataset:
# print(type(c),type(f))
dataloader4cxq = torch.utils.data.DataLoader(
dataset=my_dataset,
batch_size=8,
# batch_size=2,
drop_last=True,
# drop_last=False,
shuffle=True, # True False
# shuffle=False, # True False
collate_fn=collate_fn4cxq,
# collate_fn=None,
)
# for cnt, data in enumerate(dataloader4cxq, 0):
# # pass
# sample4cxq, label4cxq = data
# print('sample4cxq的类型: ',type(sample4cxq),'\tlabel4cxq的类型: ',type(label4cxq))
# print('迭代次数:', cnt, ' sample4cxq:', sample4cxq, ' label4cxq:', label4cxq)
print('开始创建模型'.center(80,'-'))
model = torch.nn.Linear(in_features=1, out_features=1, bias=True) # True # False
model.cuda()
# optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# 模拟华氏度与摄氏度之间的转换
# Fahrenheit = 32 + 1.8 * Celsius
model.train()
cost_function = torch.nn.MSELoss()
epochs = 100001 # 100001
epochs = 10001 # 100001
print('\n')
print('开始训练模型'.center(80,'-'))
list4delta = list()
list4epoch = list()
# scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=(lambda epoch: 0.99 ** (epoch//1000)))
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=500, gamma=0.9)
for epoch in range(epochs):
# with torch.no_grad():
# Celsius = torch.randn(10,1,dtype=torch.float).cuda()
# Fahrenheit = 32.0 + 1.8 * Celsius
# Fahrenheit = Fahrenheit.cuda()
# Celsius = torch.randn(1,1,dtype=torch.float,requires_grad=False).cuda() # requires_grad=False True
# Fahrenheit = 32.0 + 1.8 * Celsius
# Fahrenheit = Fahrenheit.cuda() # requires_grad=False
total_loss = 0.0
for cnt, data in enumerate(dataloader4cxq, 0):
Celsius, Fahrenheit = data
Celsius, Fahrenheit = Celsius.cuda().view(-1,1), Fahrenheit.cuda().view(-1,1)
output = model(Celsius)
loss = cost_function(output, Fahrenheit)
total_loss += loss.item()
optimizer.zero_grad()
loss.backward()
optimizer.step()
scheduler.step()
if epoch % 100 == 0: # if epoch % 1000 == 0:
list4delta.append(total_loss)
list4epoch.append(epoch)
if epoch % 500 == 0:
info = '\nepoch:{0:>6}/{1:<6}\t'.format(epoch,epochs)
for k, v in model.state_dict().items():
info += str(k)+ ':' + '{0:<.18f}'.format(v.item()) + '\t'
# info += str(k)+ ':' + str(v.item()) + '\t'
print(info)
fig, ax = plt.subplots()
# ax.plot(10*np.random.randn(100),10*np.random.randn(100),'o')
ax.plot(list4epoch, list4delta, 'r.-', markersize=8)
ax.set_title("Visualization For My Model's Errors")
plt.show()
控制台下输出:
Windows PowerShell
版权所有 (C) Microsoft Corporation。保留所有权利。
尝试新的跨平台 PowerShell https://aka.ms/pscore6
加载个人及系统配置文件用了 796 毫秒。
(base) PS C:\Users\chenxuqi\Desktop\News4cxq\测试学习率调度器> conda activate pytorch_1.7.1_cu102
(pytorch_1.7.1_cu102) PS C:\Users\chenxuqi\Desktop\News4cxq\测试学习率调度器> & 'D:\Anaconda3\envs\pytorch_1.7.1_cu102\python.exe' 'c:\Users\chenxuqi\.vscode\extensions\ms-python.python-2021.1.502429796\pythonFiles\lib\python\debugpy\launcher' '49758' '--' 'c:\Users\chenxuqi\Desktop\News4cxq\测试学习率调度器\test08.py'
-------------------------------------开始创建模型-------------------------------------
-------------------------------------开始训练模型-------------------------------------
epoch: 0/10001 weight:0.962383031845092773 bias:0.980020046234130859
epoch: 500/10001 weight:1.129075884819030762 bias:2.954752445220947266
epoch: 1000/10001 weight:1.238264322280883789 bias:4.707053184509277344
epoch: 1500/10001 weight:1.298225045204162598 bias:6.279161930084228516
epoch: 2000/10001 weight:1.386581063270568848 bias:7.694698333740234375
epoch: 2500/10001 weight:1.414126753807067871 bias:8.970099449157714844
epoch: 3000/10001 weight:1.462724089622497559 bias:10.119626998901367188
epoch: 3500/10001 weight:1.554199934005737305 bias:11.155819892883300781
epoch: 4000/10001 weight:1.609407067298889160 bias:12.089537620544433594
epoch: 4500/10001 weight:1.631286978721618652 bias:12.930944442749023438
epoch: 5000/10001 weight:1.631085872650146484 bias:13.689365386962890625
epoch: 5500/10001 weight:1.646203756332397461 bias:14.372797966003417969
epoch: 6000/10001 weight:1.667070984840393066 bias:14.988748550415039062
epoch: 6500/10001 weight:1.690698742866516113 bias:15.543690681457519531
epoch: 7000/10001 weight:1.677183747291564941 bias:16.043390274047851562
epoch: 7500/10001 weight:1.694453477859497070 bias:16.493432998657226562
epoch: 8000/10001 weight:1.713040113449096680 bias:16.898756027221679688
epoch: 8500/10001 weight:1.715337395668029785 bias:17.264890670776367188
epoch: 9000/10001 weight:1.727315664291381836 bias:17.592933654785156250
epoch: 9500/10001 weight:1.720250487327575684 bias:17.890419006347656250
epoch: 10000/10001 weight:1.725156664848327637 bias:18.157394409179687500