基于金豺优化算法python代码

import numpy as np

# 定义适应度函数
def fitness_func(x):
    return sum(x**2)

# 初始化金豺群体
def init_jackal_population(num_jackals, dim):
    jackals = []
    for i in range(num_jackals):
        jackal = np.random.uniform(low=-5, high=5, size=dim)
        jackals.append(jackal)
    return jackals

# 计算每个金豺的适应度值
def calc_fitness(jackals):
    fitness = []
    for jackal in jackals:
        fitness.append(fitness_func(jackal))
    return fitness

# 选择领袖金豺
def select_leader_jackal(jackals, fitness):
    idx = np.argmin(fitness)
    return jackals[idx]

# 更新金豺位置
def update_jackal_position(jackal, leader_jackal, a, r1, r2):
    new_jackal = jackal + a * (np.exp(-r1) - np.exp(-r2)) * np.abs(leader_jackal - jackal)
    return new_jackal

# 运行金豺优化算法
def run_gjo(num_iterations, num_jackals, dim):
    # 初始化金豺群体
    jackals = init_jackal_population(num_jackals, dim)
    # 计算每个金豺的适应度值
    fitness = calc_fitness(jackals)
    # 选择领袖金豺
    l

你可能感兴趣的:(优化算法优化神经网络,python,numpy,开发语言)