线程同步-信号量-互斥量-条件变量

文章目录

    • 线程同步
      • 信号量
      • 互斥量
      • 条件变量

线程同步

  • 线程同步其实实现的是线程排队。
  • 防止线程同步访问共享资源造成冲突。
  • 多个线程访问共享资源的代码有可能是同一份代码,也有可能是不同的代码;无论是否执行同一份代码,只要这些线程的代码访问同一份可变的共享资源,这些线程之间就需要同步。

1. 问题

  • 同一个进程内的各个线程,共享该进程内的全局变量
  • 如果多个线程同时对某个全局变量进行访问时,有可能达不到预期效果。

2. 信号量和互斥量的选择。

  • 互斥量:为协调共同对一个共享资源的单独访问而设计的;因为进入内核模式,所以性能比临界区差;跨进程,可用于防止程序重复打开运行。
  • 信号量:为控制一个具有有限数量用户资源而设计,互斥锁可以理解为1个用户资源的信号量。
    • 使用时,选择更符合语义的手段:
      • 如果要求最多只允许一个线程进入临界区,则使用互斥量
      • 如果要求多个线程之间的执行顺序满足某个约束,则使用信号量

条件变量:条件变量是利用线程间共享的全局变量进行同步的一种机制,主要包括两个动作:一个线程等待"条件变量的条件成立"而挂起;另一个线程使"条件成立"(给出条件成立信号)。

信号量

1)什么是信号量

  • 此时所指的“信号量”是指用于同一个进程内多个线程之间的信号量。即POSIX信号量,而不是System V信号量(用于进程之间的同步)

  • 用于线程的信号量的原理,与用于进程之间的信号量的原理相同。都有P操作、V操作。

  • 信号量的表示:sem_t 类型

    2) 信号量的初始化

      原型:int  sem_init  (sem_t  *sem,int  pshared,  unsigned int value);
      功能:对信号量进行初始化
      参数:sem,  指向被初始化的信号量
           pshared,  0:表示该信号量是该进程内使用的“局部信号量”, 不再被其它进程共享。
           		   非0:该信号量可被其他进程共享,Linux不支持这种信号量
           		   
           value,  信号量的初值。>= 0
      返回值:成功,返回0   失败, 返回错误码
    

    3) 信号量的P操作

      原型:int   sem_wait (sem_t  *sem);
      返回值:成功,返回0  失败, 返回错误码
    

    4) 信号量的V操作

      原型:int sem_post (sem_t  *sem);
      返回值:成功,返回0  失败, 返回错误码
    

    5) 信号量的删除

     原型:int sem_destroy (sem_t  *sem);
     返回值:成功,返回0   失败, 返回错误码
    

    6) 实例
    主线程循环输入字符串,把字符串存放到一个全局缓存中。新线程从全局缓存中读取字符串,统计该字符串的长度。直到用户输入end

main.c

预期结果:主线程每接收终端输入的一个字符串,子线程就打印字符串和输出字符串长度

  • 信号量被初始化为0,主线程接受一个字符串的时候,执行V操作(信号量+1),此时信号量大于1,子线程执行P操作(-1),然后对字符串做出相应的操作
#include 
#include 
#include 
#include 
#include 

#define BUFF_SIZE 80

// 全局变量可以让多个线程访问
char buff[BUFF_SIZE];
sem_t sem;

static void* str_thread_handle(void *arg) 
{
	while(1) {
		//P(sem) -1
		if (sem_wait(&sem) != 0) {
			printf("sem_wait failed!\n");
			exit(1);
		}
		
		printf("string is: %slen=%u\n", buff, (unsigned int)strlen(buff));
		if (strncmp(buff, "end", 3) == 0) {
			break;
		}
	}
}

int main(void)
{
	int ret;
	pthread_t  str_thread;
	void *thread_return;

	// 参数:被初始化信号量 0 给信号量的赋值
	ret = sem_init(&sem, 0, 0);
	if (ret != 0) {
		printf("sem_init failed!\n");
		exit(1);
	}

	// 创建线程
	ret = pthread_create(&str_thread, 0, str_thread_handle, 0);
	if (ret != 0) {
		printf("pthread_create failed!\n");
		exit(1);
	}

	while (1) {
	    // 从终端获取一行输入
		fgets(buff, sizeof(buff), stdin);

		//V(sem) +1
		// 0->1 那么线程就可以执行P操作 1->0
		if (sem_post(&sem) != 0) {
			printf("sem_post failed!\n");
			exit(1);
		}
		
		if (strncmp(buff, "end", 3) == 0) {
			break;
		}
	}

	ret = pthread_join(str_thread, &thread_return);
	if (ret != 0) {
		printf("pthread_join failed!\n");
		exit(1);
	}

	ret = sem_destroy(&sem);
	if (ret != 0) {
		printf("sem_destroy failed!\n");
		exit(1);
	}

	return 0;
}

在这里插入图片描述
练习

    创建2个线程(共有主线程、线程1、线程2共3个线程)
    主线程阻塞式等待用户输入字符串
    主线程每接收到一个字符串之后, 线程1就马上对该字符串进行处理。
    线程1的处理逻辑为:统计该字符串的个数,并记录当时的时间。
    线程1把该字符串处理完后,线程2马上就把处理结果写入文件result.txt
    直到用户输入exit.
    multi_pthread.c

互斥量

1)什么是互斥量
     效果上等同于初值为1的信号量
     互斥量的使用:类型为 pthread_mutex_t
     
2)互斥量的初始化
     原型:int  pthread_mutex_init(pthread_mutex_t *mutex,
                                   pthread_mutexattr_t *attr);
     参数:mutex, 指向被初始化的互斥量
             attr,  指向互斥量的属性
                    一般取默认属性(当一个线程已获取互斥量后,该线程再次获取该信号量,将导致死锁!)

3) 互斥量的获取
    原型:int  pthread_mutex_lock (pthread_mutex_t *mutex);   

4)互斥量的释放
     原型:int  pthread_mutex_unlock (pthread_mutex_t  *mutex);         
     
5)互斥量的删除
     int  pthread_mutex_destroy (pthread_mutex_t *mutex);  
  1. 实例
    main3.c

预期实现效果:主线程和子线程依次把全局变量 -1 ,依次往终端输出结果

  • 当没有用互斥量的时候,同时运行主线程和子线程,对全局变量进行 - 1
#include 
#include 
#include 
#include 
#include 
#include 

#define BUFF_SIZE 80

// 全局
int global_value = 1000;
pthread_mutex_t  lock;

static void* str_thread_handle(void *arg) 
{
	int i = 0;

	for (i=0; i<10; i++) {
		//pthread_mutex_lock(&lock);

		if (global_value  > 0) {
			// work
			sleep(1);
			printf("soled ticket(%d) to ChildStation(%d)\n",
				global_value, i+1);
		}
		global_value--;
		
		//pthread_mutex_unlock(&lock);
		sleep(1);
	}
}

int main(void)
{
	int ret;
	pthread_t  str_thread;
	void *thread_return;
	int i;

	

	ret = pthread_mutex_init(&lock, 0);
	if (ret != 0) {
		printf("pthread_mutex_init failed!\n");
		exit(1);
	}

	ret = pthread_create(&str_thread, 0, str_thread_handle, 0);
	if (ret != 0) {
		printf("pthread_create failed!\n");
		exit(1);
	}

	for (i=0; i<10; i++) {
		//pthread_mutex_lock(&lock);
		
		if (global_value  > 0) {
			// work
			sleep(1);
			printf("soled ticket(%d) to MainStation(%d)\n",
				global_value, i+1);
		}
		global_value--;
		
		
		//pthread_mutex_unlock(&lock);
		sleep(1);
	}

	ret = pthread_join(str_thread, &thread_return);
	if (ret != 0) {
		printf("pthread_join failed!\n");
		exit(1);
	}

	ret = pthread_mutex_destroy(&lock);
	if (ret != 0) {
		printf("pthread_mutex_destroy failed!\n");
		exit(1);
	}

	return 0;
}
  • 主线程 -10 , 子线程 -10 最后应该是 981 所以不符合预期
  • 原因 主线程和子线程同时对全局变量进行了 -1
    在这里插入图片描述
    使用信号量后
  • 上了两把锁
  • 给主线程和子线程对全局变量进行操作的部分分别上锁
#include 
#include 
#include 
#include 
#include 
#include 

#define BUFF_SIZE 80

// 全局
int global_value = 1000;
pthread_mutex_t  lock;

static void* str_thread_handle(void *arg) 
{
	int i = 0;

	for (i=0; i<10; i++) {

        /*****上锁*****/
		pthread_mutex_lock(&lock);

		if (global_value  > 0) {
			// work
			sleep(1);
			printf("soled ticket(%d) to ChildStation(%d)\n",
				global_value, i+1);
		}
		global_value--;
		
        /*****开锁*****/
		pthread_mutex_unlock(&lock);
		sleep(1);
	}
}

int main(void)
{
	int ret;
	pthread_t  str_thread;
	void *thread_return;
	int i;

	

	ret = pthread_mutex_init(&lock, 0);
	if (ret != 0) {
		printf("pthread_mutex_init failed!\n");
		exit(1);
	}

	ret = pthread_create(&str_thread, 0, str_thread_handle, 0);
	if (ret != 0) {
		printf("pthread_create failed!\n");
		exit(1);
	}

	for (i=0; i<10; i++) {

        /*****上锁*****/
		pthread_mutex_lock(&lock);
		
		if (global_value  > 0) {
			// work
			sleep(1);
			printf("soled ticket(%d) to MainStation(%d)\n",
				global_value, i+1);
		}
		global_value--;
		
		/*****开锁*****/
		pthread_mutex_unlock(&lock);
		sleep(1);
	}

	ret = pthread_join(str_thread, &thread_return);
	if (ret != 0) {
		printf("pthread_join failed!\n");
		exit(1);
	}

	ret = pthread_mutex_destroy(&lock);
	if (ret != 0) {
		printf("pthread_mutex_destroy failed!\n");
		exit(1);
	}

	return 0;
}
  • 结果分析:相比于上次,每一次输出全局变量就 -1 最后结果为 981
    在这里插入图片描述

条件变量

1.什么是线程条件变量

与互斥锁不同,条件变量是用来等待而不是用来上锁的。条件变量用来自动阻塞一个线程,直到某特殊情况发生为止。通常条件变量和互斥锁同时使用。

条件变量使我们可以睡眠等待某种条件出现。条件变量是利用线程间共享的全局变量进行同步的一种机制,主要包括两个动作:一个线程等待"条件变量的条件成立"而挂起;另一个线程使"条件成立"(给出条件成立信号)。

2. 条件变量初始化

  原型:int pthread_cond_init (pthread_cond_t *cond, const pthread_condattr_t *attr);
    参数:cond: 条件变量指针
         attr:条件变量高级属性

3. 唤醒一个等待线程

原型: int pthread_cond_signal (pthread_cond_t *cond);
参数:cond:条件变量指针

4.唤醒所有等待该条件变量的线程

原型: int pthread_cond_broadcast (pthread_cond_t *cond);
参数:cond,  条件变量指针

5.等待条件变量/超时被唤醒

原型: int pthread_cond_timedwait (pthread_cond_t *cond, pthread_mutex_t *mutex, 
									const struct timespec *abstime);
参数:cond,  条件变量指针
      pthread_mutex_t *mutex 互斥量
      const struct timespec *abstime 等待被唤醒的绝对超时时间

6.等待条件变量被唤醒(一般使用这个)

原型: int pthread_cond_wait (pthread_cond_t *cond, pthread_mutex_t *mutex);
参数:cond,  条件变量指针
      pthread_mutex_t *mutex 互斥量

常见错误码: [EINVAL] cond或mutex无效,
[EINVAL] 同时等待不同的互斥量
[EINVAL] 主调线程没有占有互斥量

7. 释放/销毁条件变量

pthread_cond_destroy  待销毁的条件变量 
原型: int pthread_cond_destroy (pthread_cond_t *cond);
参数:cond,  条件变量指针

main.c

效果:触发信号,子线程向终端打印数据

#include 
#include 
#include 

// 注意这里一定要定义为全局变量
pthread_mutex_t mutex;
pthread_cond_t cond;

void *thread1(void *arg)
{

	while (1) {

		printf("thread1 is running\n");
		
		// 加锁
		pthread_mutex_lock(&mutex);
		printf("thread1 lock..\n");

		// 解锁-阻塞等待信号-信号来了-加锁-执行任务
		pthread_cond_wait(&cond, &mutex);


		// 执行任务
		printf("thread1 applied the condition\n");


		// 解锁
		printf("thread1 unlock..\n");
		pthread_mutex_unlock(&mutex);

		sleep(4);

	}
}


void *thread2(void *arg)
{

	while (1) {

		printf("thread2 is running\n");

		pthread_mutex_lock(&mutex);
		printf("thread2 lock..\n");

		pthread_cond_wait(&cond, &mutex);

		printf("thread2 applied the condition\n");

		printf("thread2 unlock..\n");
		pthread_mutex_unlock(&mutex);

		sleep(2);

	}

}

int main()
{

	pthread_t thid1, thid2;

	printf("condition variable study!\n");

	// 初始化互斥锁  效果上等同于初值为1的信号量
	// 初始化条件变量
	pthread_mutex_init(&mutex, NULL);
	pthread_cond_init(&cond, NULL);

	// 创建两个线程
	pthread_create(&thid1, NULL, (void *)thread1, NULL);
	pthread_create(&thid2, NULL, (void *)thread2, NULL);

	// 不断发送信号,唤醒一个线程
	do {
		sleep(10);
		pthread_cond_signal(&cond);

	} while (1);


	return 0;

}

结果分析:为什么两个线程可以同时上锁?
因为 pthread_cond_wait(&cond, &mutex); 执行过程中有一个解锁的过程,所以是解锁后,另一个线程拿到锁。但是如果此线程被信号触发,那么也会立即上锁,执行任务。

在这里插入图片描述

你可能感兴趣的:(线程,linux,网络,c++,c语言,服务器)