tensorflow入门

注:
tensorflow 1.3.0
python 3.6

入门学习

  • 建议下面的例子挨着敲一下,亲测可用,注意看发表时间。最后一个例子下载失败可以暂时忽略。
    ps: 2018年3月6日23:45:29

  • hello tensorflow

import tensorflow as tf
'''
tensorflow 入门 hello tensorflow

简单的输出一句话

tf constant
tf session
run

'''

hello = tf.constant('Hello, Tensorflow')
sess = tf.Session()
print(sess.run(hello))

输出:

b'Hello, Tensorflow'
  • constant运算 加 乘
import tensorflow as tf

a = tf.constant(2)
b = tf.constant(3)

with tf.Session() as sess:
    print("a=2,b=3")
    print("a+b=",sess.run(a+b))
    print("a*b=",sess.run(a*b))

输出:

a=2,b=3
a+b= 5
a*b= 6

  • placeholder 运算
import tensorflow as tf

a = tf.placeholder(tf.int16)
b = tf.placeholder(tf.int16)

add = tf.add(a,b)
mul = tf.multiply(a,b) # 乘!

with tf.Session() as sess:
    print("add=",sess.run(add,feed_dict={a:1,b:2}))
    print("mul=",sess.run(mul,feed_dict={a:1,b:2}))

输出:

add= 3
mul= 2
  • 矩阵相乘
import tensorflow as tf

a = tf.constant([[3.,3.]]) # 相当于1*2矩阵
b = tf.constant([[2.],[2.]]) # 相当于2*1矩阵
result = tf.matmul(a,b)

with tf.Session() as sess:
    print("result=",sess.run(result))



输出:

result= [[12.]]
  • 线性回归
import tensorflow as tf
import numpy
import matplotlib.pyplot as plt
rng = numpy.random

# Parameters
learning_rate = 0.01
training_epochs = 2000
display_step = 50

# Training Data
train_X = numpy.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167,7.042,10.791,5.313,7.997,5.654,9.27,3.1])
train_Y = numpy.asarray([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221,2.827,3.465,1.65,2.904,2.42,2.94,1.3])
n_samples = train_X.shape[0]

# tf Graph Input
X = tf.placeholder("float")
Y = tf.placeholder("float")

# Create Model

# Set model weights
W = tf.Variable(rng.randn(), name="weight")
b = tf.Variable(rng.randn(), name="bias")

# Construct a linear model
activation = tf.add(tf.multiply(X, W), b) # activation = x*W + b

# Minimize the squared errors
cost = tf.reduce_sum(tf.pow(activation-Y, 2))/(2*n_samples) #L2 loss
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) #Gradient descent

# Initializing the variables
init = tf.initialize_all_variables()

# Launch the graph
with tf.Session() as sess:
    sess.run(init)

    # Fit all training data
    for epoch in range(training_epochs):
        for (x, y) in zip(train_X, train_Y):
            sess.run(optimizer, feed_dict={X: x, Y: y})

        #Display logs per epoch step
        if epoch % display_step == 0:
            print("Epoch:", '%04d' % (epoch+1), "cost=", \
                "{:.9f}".format(sess.run(cost, feed_dict={X: train_X, Y:train_Y})), \
                "W=", sess.run(W), "b=", sess.run(b))

    print("Optimization Finished!")
    print("cost=", sess.run(cost, feed_dict={X: train_X, Y: train_Y}), \
          "W=", sess.run(W), "b=", sess.run(b))

    #Graphic display
    plt.plot(train_X, train_Y, 'ro', label='Original data')
    plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
    plt.legend()
    plt.show()

  • 逻辑回归
import tensorflow as tf
# Import MINST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)

'''
运行失败的 数据集网上无法下载的
提示如下:
urllib.error.URLError: 
'''

# Parameters
learning_rate = 0.01
training_epochs = 25
batch_size = 100
display_step = 1

# tf Graph Input
x = tf.placeholder(tf.float32, [None, 784]) # mnist data image of shape 28*28=784
y = tf.placeholder(tf.float32, [None, 10]) # 0-9 digits recognition => 10 classes

# Set model weights
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))

# Construct model
pred = tf.nn.softmax(tf.matmul(x, W) + b) # Softmax

# Minimize error using cross entropy
cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(pred), reduction_indices=1))
# Gradient Descent
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)

# Initializing the variables
init = tf.initialize_all_variables()

# Launch the graph
with tf.Session() as sess:
    sess.run(init)

    # Training cycle
    for epoch in range(training_epochs):
        avg_cost = 0.
        total_batch = int(mnist.train.num_examples/batch_size)
        # Loop over all batches
        for i in range(total_batch):
            batch_xs, batch_ys = mnist.train.next_batch(batch_size)
            # Run optimization op (backprop) and cost op (to get loss value)
            _, c = sess.run([optimizer, cost], feed_dict={x: batch_xs,
                                                          y: batch_ys})
            # Compute average loss
            avg_cost += c / total_batch
        # Display logs per epoch step
        if (epoch+1) % display_step == 0:
            print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost))

    print("Optimization Finished!")

    # Test model
    correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
    # Calculate accuracy
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    print("Accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.test.labels}))

你可能感兴趣的:(tensorflow入门)